login
A144640
Row sums from A144562.
3
3, 17, 48, 102, 185, 303, 462, 668, 927, 1245, 1628, 2082, 2613, 3227, 3930, 4728, 5627, 6633, 7752, 8990, 10353, 11847, 13478, 15252, 17175, 19253, 21492, 23898, 26477, 29235, 32178, 35312, 38643, 42177, 45920, 49878, 54057, 58463, 63102, 67980, 73103
OFFSET
1,1
COMMENTS
Row 2 of the convolution array A213833. - Clark Kimberling, Jul 04 2012
FORMULA
a(n) = n*(2*n^2 + 5*n - 1)/2. - Jon E. Schoenfield, Jun 24 2010
G.f.: x*(3+5*x-2*x^2)/(1-x)^4. - Vincenzo Librandi, Jul 06 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jul 06 2012
E.g.f.: x*(6 + 11*x + 2*x^2)*exp(x)/2. - G. C. Greubel, Mar 01 2021
MAPLE
A144640:= n-> n*(2*n^2 +5*n -1)/2; seq(A144640(n), n=1..40); # G. C. Greubel, Mar 01 2021
MATHEMATICA
CoefficientList[Series[(3+5*x-2*x^2)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 06 2012 *)
PROG
(Magma) I:=[3, 17, 48, 102]; [n le 4 select I[n] else 4*Self(n-1) -6*Self(n-2) +4*Self(n-3) -Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jul 06 2012
(Sage) [n*(2*n^2 +5*n -1)/2 for n in (1..40)] # G. C. Greubel, Mar 01 2021
CROSSREFS
Sequence in context: A162291 A095697 A154304 * A084069 A297514 A307862
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jan 21 2009, Jun 29 2009
STATUS
approved