OFFSET
0,1
COMMENTS
The old definition given for this sequence was "A sequence obeying a third-order linear recurrence".
Ruling out finitely many exceptional terms, this sequence differs by a constant from several related enumerations with a slightly more complicated structure (fourth-order linear recurrence):
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
G. P. Michon, Silent Prisms: A Screaming Game for Short-Sighted People.
Index entries for linear recurrences with constant coefficients, signature (7,-9,1).
FORMULA
G.f.: (3 - 14*x + 9*x^2)/(1 - 7*x + 9*x^2 - x^3).
a(n+3) = 7*a(n+2) - 9*a(n+1) + a(n).
a(n) = A^n + B^n + C^n, where, putting u = atan(sqrt(5319)/73), we have:
A = 5.3538557854308282... = (7 + 2*sqrt(22)*cos(u/3))/3,
B = 1.5235479602692093... = (7 - sqrt(22)*cos(u/3) + sqrt(66)*sin(u/3))/3,
C = 0.1225962542999624... = (7 - sqrt(22)*cos(u/3) - sqrt(66)*sin(u/3))/3.
EXAMPLE
a(0) = 3 = A^0 + B^0 + C^0, a(1) = 7 = A + B + C.
MAPLE
m:=30; S:=series( (3-14*x+9*x^2)/(1-7*x+9*x^2-x^3), x, m+1):
seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Mar 30 2021
MATHEMATICA
LinearRecurrence[{7, -9, 1}, {3, 7, 31}, 40] (* Harvey P. Dale, May 25 2011 *)
CoefficientList[Series[(3 -14x +9x^2)/(1 -7x +9x^2 -x^3), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 21 2012 *)
PROG
(Magma) I:=[3, 7, 31]; [n le 3 select I[n] else 7*Self(n-1)-9*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Oct 21 2012
(PARI) a(n)=([0, 1, 0; 0, 0, 1; 1, -9, 7]^n*[3; 7; 31])[1, 1] \\ Charles R Greathouse IV, Feb 10 2017
(Sage)
def A141385_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (3-14*x+9*x^2)/(1-7*x+9*x^2-x^3) ).list()
A141385_list(40) # G. C. Greubel, Mar 30 2021
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
Gerard P. Michon, Jul 02 2008, Jul 23 2008
EXTENSIONS
New definition by Bruno Berselli, Oct 22 2012
STATUS
approved