login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A141221 Number of ways for each of 2n (labeled) people in a circle to look at either a neighbor or the diametrally opposite person, such that no eye contact occurs. 2
0, 30, 156, 826, 4406, 23562, 126104, 675074, 3614142, 19349430, 103593804, 554625898, 2969386478, 15897666066, 85113810056, 455687062274, 2439682811478, 13061709929934, 69930511268508, 374397872321626 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..20.

Max A. Alekseyev, GĂ©rard P. Michon, Making Walks Count: From Silent Circles to Hamiltonian Cycles, arXiv:1602.01396 [math.CO], 2016.

Art of Problem Solving Forum, How many distinct ways that silence will occur?

G. P. Michon, Brocoum's Screaming Circles.

G. P. Michon, Silent circles, enumerated by Max Alekseyev.

G. P. Michon, A screaming game for short-sighted people.

FORMULA

For n>1, a(n+4) = 8 a(n+3) - 16 a(n+2) + 10 a(n+1) - a(n)

O.g.f.: 2x^2(-15+42x-29x^2+3x^3)/((1-x)(x^3-9x^2+7x-1)). - R. J. Mathar, Jun 16 2008

EXAMPLE

a(1)=0 because two people always make eye contact when they look at each other.

a(2)=30 because 4 people can look at each other in 30 distinct ways without making eye contact.

CROSSREFS

Cf. A094047, A114939.

Cf. A141384, A141385.

Sequence in context: A042760 A042762 A064240 * A159884 A074357 A140594

Adjacent sequences:  A141218 A141219 A141220 * A141222 A141223 A141224

KEYWORD

nonn

AUTHOR

Max Alekseyev, Jun 14 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 22 10:37 EDT 2017. Contains 290946 sequences.