This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A141310 The odd numbers interlaced with the constant-2 sequence. 2
 1, 2, 3, 2, 5, 2, 7, 2, 9, 2, 11, 2, 13, 2, 15, 2, 17, 2, 19, 2, 21, 2, 23, 2, 25, 2, 27, 2, 29, 2, 31, 2, 33, 2, 35, 2, 37, 2, 39, 2, 41, 2, 43, 2, 45, 2, 47, 2, 49, 2, 51, 2, 53, 2, 55, 2, 57, 2, 59, 2, 61, 2, 63, 2, 65, 2, 67, 2, 69, 2, 71, 2, 73, 2, 75, 2, 77, 2, 79, 2, 81, 2, 83, 2, 85, 2, 87, 2, 89, 2, 91, 2, 93, 2, 95, 2, 97 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Similarly, the principle of interlacing a sequence and its first differences leads from A000012 and its differences A000004 to A059841, or from A140811 and its first differences A017593 to a sequence -1, 6, 5, 18, ... If n is even then a(n) = n + 1 ; otherwise a(n) = 2. - Wesley Ivan Hurt, Jun 05 2013 Denominators of floor((n+1)/2) / (n+1), n > 0. - Wesley Ivan Hurt, Jun 14 2013 a(n) is also the number of minimum total dominating sets in the (n+1)-gear graph for n>1. - Eric W. Weisstein, Apr 11 2018 LINKS Antti Karttunen, Table of n, a(n) for n = 0..16384 Eric Weisstein's World of Mathematics, Gear Graph Eric Weisstein's World of Mathematics, Total Dominating Set Index entries for linear recurrences with constant coefficients, signature (0, 2, 0, -1). FORMULA a(2n) = A005408(n). a(2n+1) = 2. First differences: a(n+1) - a(n) = (-1)^(n+1)*A109613(n-1), n > 0. b(2n) = -A008586(n), and b(2n+1) = A060747(n), where b(n) = a(n+1) - 2*a(n). a(n) = 2*a(n-2) - a(n-4). - R. J. Mathar, Feb 23 2009 G.f.: (1+2*x+x^2-2*x^3)/((x-1)^2*(1+x)^2). - R. J. Mathar, Feb 23 2009 From Wesley Ivan Hurt, Jun 05 2013: (Start) a(n) = n + 1 - (n - 1)*(n mod 2). a(n) = (n + 1) * (n - floor((n+1)/2))! / floor((n+1)/2)!. a(n) = A000142(n+1) / A211374(n+1). (End) MAPLE a(n):=n->n+1-(n-1)*(n mod 2); seq(a(k), k=1..100); # Wesley Ivan Hurt, Jun 05 2013 MATHEMATICA Flatten[Table[{2 n - 1, 2}, {n, 40}]] (* Alonso del Arte, Jun 15 2013 *) Riffle[Range[1, 79, 2], 2] (* Alonso del Arte, Jun 14 2013 *) Table[((-1)^n (n - 1) + n + 3)/2, {n, 0, 20}] (* Eric W. Weisstein, Apr 11 2018 *) Table[Floor[(n + 1)/2]/(n + 1), {n, 0, 20}] // Denominator (* Eric W. Weisstein, Apr 11 2018 *) LinearRecurrence[{0, 2, 0, -1}, {2, 3, 2, 5}, {0, 20}] (* Eric W. Weisstein, Apr 11 2018 *) CoefficientList[Series[(1 + 2 x + x^2 - 2 x^3)/(-1 + x^2)^2, {x, 0, 20}], x] (* Eric W. Weisstein, Apr 11 2018 *) PROG (PARI) A141310(n) = if(n%2, 2, 1+n); \\ (for offset=0 version) - Antti Karttunen, Oct 02 2018 (PARI) A141310off1(n) = if(n%2, n, 2); \\ (for offset=1 version) - Antti Karttunen, Oct 02 2018 CROSSREFS Cf. A000004, A000012, A000142, A005408, A008586, A017593, A059841, A060747, A109613, A140811, A141310, A211374, A319702 (rgs-transform). Sequence in context: A088444 A108077 A248737 * A007389 A007388 A057815 Adjacent sequences:  A141307 A141308 A141309 * A141311 A141312 A141313 KEYWORD nonn,easy AUTHOR Paul Curtz, Aug 02 2008 EXTENSIONS Edited by R. J. Mathar, Feb 23 2009 Term a(45) corrected, and more terms added by Antti Karttunen, Oct 02 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 18 13:22 EST 2018. Contains 317306 sequences. (Running on oeis4.)