OFFSET
0,3
COMMENTS
Denominators of the j-th column are A002790(j). Note that the fractions defined by division are not fully reduced to coprime numerator and denominator.
REFERENCES
P. Curtz, Intégration numérique des systèmes différentiels à conditions initiales, Centre de Calcul Scientifique de l'Armement, Arcueil, 1969.
EXAMPLE
The array a(i,j) starts with rows i>=0 and columns j>=0 as:
1 1/2 -1/6 1/4 -19/30 9/4 -863/84 1375/24 ...
1 3/2 5/6 -1/4 11/30 -11/12 271/84 -117/8 ...
1 5/2 23/6 9/4 -19/30 11/12 -191/84 191/24 ...
1 7/2 53/6 55/4 251/30 -9/4 271/84 -191/24 ...
1 9/2 95/6 161/4 1901/30 475/12 -863/84 117/8 ...
1 11/2 149/6 351/4 6731/30 4277/12 19087/84 -1375/24 ...
The sequence lists the numerators of the j-th column from row 0 down to row j.
The fractions of the j=5 column, 9/4, -11/12, 11/12, -9/4, 475/12, 4277/12, are listed with a common denominator A002790(5)=12 as 27, -11, 11, -27, 475, 4277.
MATHEMATICA
a[i_, j_] := Sum[((1+i)^(k+1)-i^(k+1))*StirlingS1[j, k]/(k+1), {k, 0, j}]; col[j_] := Total[Table[a[i, j], {i, 0, j} ]*x^Range[0, j]] // Together // Numerator // CoefficientList[#, x]&; Table[col[j], {j, 0, 9}] // Flatten (* Jean-François Alcover, Jan 10 2016 *)
CROSSREFS
KEYWORD
AUTHOR
Paul Curtz, Jul 17 2008
EXTENSIONS
Edited by R. J. Mathar, Aug 06 2008
STATUS
approved