login
A140796
a(n)=a(n-1)+6a(n-2), n>2.
2
1, 5, 14, 44, 128, 392, 1160, 3512, 10472, 31544, 94376, 283640, 849896, 2551736, 7651112, 22961528, 68868200, 206637368, 619846568, 1859670776, 5578750184, 16736774840, 50209275944, 150629924984, 451885580648, 1355665130552
OFFSET
0,2
COMMENTS
The binomial transform is A037481.
The recurrence of the definition is also satisfied by A087451, A102901 and A140725.
FORMULA
a(n+1)-3a(n) = (-1)^n*A000079(n-1), n>0.
d(n+1)-3d(n) = (-1)^(n+1)*A000079(n-1), n>0, where d(n) is the sequence of pair sums d(n)= a(n)+a(n+1)=6, 19, 58, 172,...
O.g.f.: (1+x)(3x+1)/((2x+1)(1-3x)). - R. J. Mathar, Jul 29 2008
a(n) = (-1)^(n+1)*2^n/10+8*3^n/5, n>0. - R. J. Mathar, Jul 29 2008
a(n) = A140725(n)+A140725(n+1). - Philippe Deléham, Nov 17 2013
MATHEMATICA
Join[{1}, LinearRecurrence[{1, 6}, {5, 14}, 30]] (* Harvey P. Dale, Nov 20 2011 *)
CROSSREFS
Sequence in context: A034530 A125246 A302762 * A197212 A100059 A270062
KEYWORD
nonn
AUTHOR
Paul Curtz, Jul 15 2008
EXTENSIONS
Edited and extended by R. J. Mathar, Jul 29 2008
STATUS
approved