login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A087451 G.f.: (2-x)/((1+2x)(1-3x)); e.g.f.: exp(3x)+exp(-2x); a(n)=3^n+(-2)^n. 5
2, 1, 13, 19, 97, 211, 793, 2059, 6817, 19171, 60073, 175099, 535537, 1586131, 4799353, 14316139, 43112257, 129009091, 387682633, 1161737179, 3487832977, 10458256051, 31385253913, 94134790219, 282446313697, 847255055011 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Generalized Lucas-Jacobsthal numbers.

Pisano period lengths: 1, 1, 1, 2, 4, 1, 6, 2, 3, 4, 5, 2, 12, 6, 4, 4, 16, 3, 18, 4,... - R. J. Mathar, Aug 10 2012

LINKS

Table of n, a(n) for n=0..25.

Drexel University, Generation X and Y

G. Everest, Y. Puri and T. Ward, Integer sequences counting periodic points, arXiv:math/0204173 [math.NT], 2002.

OEIS Wiki, Autosequence

Index entries for linear recurrences with constant coefficients, signature (1,6)

FORMULA

a(0) = 2, a(1) = 1, a(n) = a(n-1)+6a(n-2).

a(n) = 3^n + (-2)^n. [Gary Detlefs, Dec 20 2009]

The sequence 1, 13, 19... is a(n+1) = 3*3^n-2*(-2)^n.

exp( Sum_{n >= 1} a(n)*x^n/n ) = Sum_{n >= 0} A015441(n+1)*x^n. - Peter Bala, Mar 30 2015

a(n) = 2*A015441(n+1) - A015441(n), a formula given by Paul Curtz for autosequences of the 2nd kind. - Jean-Fran├žois Alcover, Jun 02 2017

MAPLE

for i from 0 to 20 do print(3^i+(-2)^i) od; # Gary Detlefs, Dec 20 2009

MATHEMATICA

a[0] = 2; a[1] = 1; a[n_] := a[n] = a[n - 1] + 6a[n - 2]; a /@ Range[0, 25] (* Robert G. Wilson v, Feb 02 2006 *)

PROG

(Sage) [lucas_number2(n, 1, -6) for n in xrange(0, 26)] # Zerinvary Lajos, Apr 30 2009

CROSSREFS

Cf. A014551, A087452, A015441.

Sequence in context: A113097 A032001 A118679 * A063558 A174170 A264373

Adjacent sequences:  A087448 A087449 A087450 * A087452 A087453 A087454

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Sep 06 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 24 00:27 EST 2017. Contains 295164 sequences.