|
|
A087450
|
|
Smallest number (see comment for representation) with all identical digits having n distinct prime divisors.
|
|
1
|
|
|
11, 12, 16, 26, 46, 61, 62, 121, 122, 182, 241, 242, 322, 301, 302, 422, 642, 646, 722, 1006, 601, 602, 842, 962, 1261, 1262, 1201, 1202, 2042, 1681, 1682, 1922, 1801, 1802, 2102, 2402, 2522, 3302, 3361, 3362, 3001, 3002
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Sequence represented by citing the number of repeated digits concatenated with that digit, i.e. a(8) = 122.
No more terms < 3600. - David Wasserman, Jun 03 2005
|
|
LINKS
|
Table of n, a(n) for n=1..42.
|
|
EXAMPLE
|
a(6) = 86 because 66666666= 2*3*11*73*101*137, is 8 digits long and has 6 distinct prime divisors.
|
|
MATHEMATICA
|
PrimeFactors[n_Integer] := Flatten[Table[ #[[1]], {1}] & /@ FactorInteger[n]]; Do[k = 1; While[t = Table[j*(10^k - 1)/9, {j, 1, 9}]; l = Map[Length, Map[PrimeFactors, t]]; Position[l, n] == {}, k++ ]; d = t[[Position[l, n][[1, 1]]]]; Print[10k + Position[l, n][[1, 1]]], {n, 0, 17}]
|
|
CROSSREFS
|
Cf. A087331.
Sequence in context: A072239 A079350 A070605 * A176650 A046465 A134926
Adjacent sequences: A087447 A087448 A087449 * A087451 A087452 A087453
|
|
KEYWORD
|
base,nonn
|
|
AUTHOR
|
Robert G. Wilson v, Sep 06 2003
|
|
EXTENSIONS
|
More terms from David Wasserman, Jun 03 2005
|
|
STATUS
|
approved
|
|
|
|