login
A140222
A number j is included if (Sum_{k=1..j} d(k)) is prime, where d(k) is the number of divisors of k.
2
2, 3, 9, 11, 13, 14, 28, 29, 31, 34, 35, 51, 54, 56, 61, 81, 83, 93, 94, 97, 98, 123, 124, 131, 140, 142, 171, 173, 177, 179, 180, 185, 187, 190, 191, 193, 195, 228, 230, 231, 233, 234, 248, 251, 290, 293, 294, 296, 297, 304, 309, 310, 315, 316, 320, 322, 373
OFFSET
1,1
COMMENTS
Sum_{k=1..j} d(k) = Sum_{k=1..j} floor(j/k) = A006218(j).
LINKS
EXAMPLE
9 is in the sequence because the number of divisors of 1,2,...,9 are 1,2,2,3,2,4,2,4,3, respectively, having as sum the prime number 23.
MAPLE
with(numtheory): a:=proc(n) if isprime(sum(tau(k), k=1..n))=true then n else end if end proc: seq(a(n), n=1..400); # Emeric Deutsch, Jun 08 2008
MATHEMATICA
Position[Accumulate@ DivisorSigma[0, Range@ 400], _?PrimeQ][[All, 1]] (* Michael De Vlieger, Feb 19 2019 *)
CROSSREFS
Sequence in context: A229492 A328970 A103039 * A272537 A121557 A138984
KEYWORD
nonn
AUTHOR
Leroy Quet, May 12 2008
EXTENSIONS
More terms from Emeric Deutsch, Jun 08 2008
STATUS
approved