login
A140219
Denominator of the coefficient [x^1] of the Bernoulli twin number polynomial C(n,x).
2
1, 1, 2, 2, 6, 6, 6, 6, 10, 10, 6, 6, 210, 210, 2, 2, 30, 30, 42, 42, 110, 110, 6, 6, 546, 546, 2, 2, 30, 30, 462, 462, 170, 170, 6, 6, 51870, 51870, 2, 2, 330, 330, 42, 42, 46, 46, 6, 6, 6630, 6630, 22, 22, 30, 30, 798, 798, 290
OFFSET
0,3
COMMENTS
See A140351 for the main part of the documentation.
FORMULA
a(n) = denominator(Sum_{i=0..n} binomial(n,i)*(i+1)*bern(i)). - Vladimir Kruchinin, Oct 05 2016
a(n) = A006955(floor(n/2)). - Georg Fischer, Nov 29 2022
MAPLE
C := proc(n, x) if n = 0 then 1; else add(binomial(n-1, j-1)* bernoulli(j, x), j=1..n) ; expand(%) ; end if ; end proc:
A140219 := proc(n) coeff(C(n, x), x, 1) ; denom(%) ; end proc:
seq(A140219(n), n=1..80) ; # R. J. Mathar, Sep 22 2011
MATHEMATICA
Table[Sum[Binomial[n, k]*(k+1)*BernoulliB[k], {k, 0, n}], {n, 0, 60}] // Denominator (* Vaclav Kotesovec, Oct 05 2016 *)
PROG
(Maxima) makelist(denom(sum((binomial(n, i)*(i+1)*bern(i)), i, 0, n)), n, 0, 20); /* Vladimir Kruchinin, Oct 05 2016 */
(PARI) a(n) = denominator(sum(i=0, n, binomial(n, i)*(i+1)*bernfrac(i))); \\ Michel Marcus, Oct 05 2016
CROSSREFS
Cf. A002427, A006955, A048594, A140351 (numerators).
Sequence in context: A196872 A319865 A350657 * A259225 A300951 A077081
KEYWORD
nonn,frac
AUTHOR
Paul Curtz, Jun 23 2008
STATUS
approved