login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140133
Decimal expansion of the area enclosed in the lens-shaped region of the Laplace Limit.
1
1, 8, 5, 3, 2, 6, 8, 4, 4, 8, 7, 0, 7, 9, 8, 7, 0, 3, 3, 2, 2, 1, 9, 3, 6, 4, 0, 3, 4, 3, 9, 7, 2, 7, 8, 8, 7, 9, 4, 6, 9, 6, 5, 3, 8, 9, 6, 3, 2, 5, 4, 6, 4, 0, 1, 3, 5, 5, 7, 8, 1, 0, 0, 2, 0, 6, 7, 8, 7, 9, 7, 3, 6, 5, 0, 8, 5, 1, 6, 6, 2, 7, 1, 1, 7, 1, 3, 3, 4, 8, 8, 5, 5, 6, 9, 0, 2, 5, 8, 8
OFFSET
1,2
COMMENTS
See Weisstein for complex analysis function.
LINKS
Eric W. Weisstein, Laplace Limit (value given is incorrect)
EXAMPLE
1.8532684487079870332219364034397278879469653896325464...
MATHEMATICA
f[x_] := (Sqrt[x - Tanh[x]]*(x*Csch[x]^2 + 2*x - Coth[x]))/(2* Sqrt[-x + Coth[x]]); xmax = x /. FindRoot[Coth[x] - x == 0, {x, 1}, WorkingPrecision -> 200]; First[ RealDigits[ Chop[ Quiet[ NIntegrate[f[x], {x, 0, xmax}, WorkingPrecision -> 200, MaxRecursion -> 20]]*4], 10, 100]] (* Jean-François Alcover, Jun 07 2012, after D. S. McNeil *)
PROG
(Sage)
def A140133_cons(dps=200):
from mpmath import mp, sqrt, tanh, coth, csch, findroot, quad
mp.dps = 2*dps # safety
def f(x): return 1/2*sqrt(x - tanh(x))*(x*csch(x)^2 + 2*x - coth(x))/sqrt(-x + coth(x))
xmax = findroot(lambda x: coth(x)-x, 1)
return quad(f, [0, xmax])*4 # D. S. McNeil, Feb 01 2011
CROSSREFS
Sequence in context: A116397 A275306 A176705 * A086723 A011406 A201488
KEYWORD
cons,nonn
AUTHOR
Jonathan Vos Post, Jun 04 2008
STATUS
approved