login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A140133 Decimal expansion of the area enclosed in the lens-shaped region of the Laplace Limit. 0
1, 8, 5, 3, 2, 6, 8, 4, 4, 8, 7, 0, 7, 9, 8, 7, 0, 3, 3, 2, 2, 1, 9, 3, 6, 4, 0, 3, 4, 3, 9, 7, 2, 7, 8, 8, 7, 9, 4, 6, 9, 6, 5, 3, 8, 9, 6, 3, 2, 5, 4, 6, 4, 0, 1, 3, 5, 5, 7, 8, 1, 0, 0, 2, 0, 6, 7, 8, 7, 9, 7, 3, 6, 5, 0, 8, 5, 1, 6, 6, 2, 7, 1, 1, 7, 1, 3, 3, 4, 8, 8, 5, 5, 6, 9, 0, 2, 5, 8, 8 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

See Weisstein for complex analysis function.

LINKS

Table of n, a(n) for n=1..100.

Eric W. Weisstein, Laplace Limit (value given is incorrect)

EXAMPLE

1.853268...

MATHEMATICA

f[x_] := (Sqrt[x - Tanh[x]]*(x*Csch[x]^2 + 2*x - Coth[x]))/(2* Sqrt[-x + Coth[x]]); xmax = x /. FindRoot[Coth[x] - x == 0, {x, 1}, WorkingPrecision -> 200]; First[ RealDigits[ Chop[ Quiet[ NIntegrate[f[x], {x, 0, xmax}, WorkingPrecision -> 200, MaxRecursion -> 20]]*4], 10, 100]] (* Jean-Fran├žois Alcover, Jun 07 2012, after D. S. McNeil *)

PROG

(Sage)

def A140133_cons(dps=200):

    from mpmath import mp, sqrt, tanh, coth, csch, findroot, quad

    mp.dps = 2*dps # safety

    def f(x): return 1/2*sqrt(x - tanh(x))*(x*csch(x)^2 + 2*x - coth(x))/sqrt(-x + coth(x))

    xmax = findroot(lambda x: coth(x)-x, 1)

    return quad(f, [0, xmax])*4  # [D. S. McNeil, Feb 01 2011]

CROSSREFS

Cf. A033259, A085984.

Sequence in context: A116397 A275306 A176705 * A086723 A011406 A201488

Adjacent sequences:  A140130 A140131 A140132 * A140134 A140135 A140136

KEYWORD

cons,nonn

AUTHOR

Jonathan Vos Post, Jun 04 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 19 16:10 EST 2017. Contains 294936 sequences.