login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A033259 Decimal expansion of Laplace's limit constant. 8
6, 6, 2, 7, 4, 3, 4, 1, 9, 3, 4, 9, 1, 8, 1, 5, 8, 0, 9, 7, 4, 7, 4, 2, 0, 9, 7, 1, 0, 9, 2, 5, 2, 9, 0, 7, 0, 5, 6, 2, 3, 3, 5, 4, 9, 1, 1, 5, 0, 2, 2, 4, 1, 7, 5, 2, 0, 3, 9, 2, 5, 3, 4, 9, 9, 0, 9, 7, 1, 8, 5, 3, 0, 8, 6, 5, 1, 1, 2, 7, 7, 2, 4, 9, 6, 5, 4, 8, 0, 2, 5, 9, 8, 9, 5, 8, 1, 8, 1, 6, 8 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Maximum value taken by the function x/cosh(x), which occurs at A085984. - Hrothgar, Mar 12 2014

REFERENCES

S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 266-268.

J. J. Green, The Lipschitz constant for the radial projection on real l_p - implementation notes, http://soliton.vm.bytemark.co.uk/pub/jjg/code/lcrp-inote.pdf, 2012. - From N. J. A. Sloane, Sep 19 2012

LINKS

Table of n, a(n) for n=0..100.

S. R. Finch, Laplace Limit Constant

Simon Plouffe, The laplace limit constant(to 500 digits)

Eric Weisstein's World of Mathematics, Laplace Limit.

Eric Weisstein's World of Mathematics, Kepler's Equation

FORMULA

Equals sqrt(A085984^2-1). [Jean-Fran├žois Alcover, May 14 2013]

EXAMPLE

0.662743419349181580974742097109252907056233549115022417520392534990971853086...

MATHEMATICA

x/.FindRoot[ x Exp[ Sqrt[ 1+x^2 ] ]/(1+Sqrt[ 1+x^2 ])==1, {x, 1} ]

PROG

(PARI) sqrt(solve(u=1, 2, tanh(u)-1/u)^2-1)   \\ M. F. Hasler, Feb 01 2011

CROSSREFS

Cf. A033259 - A033263, A085984.

Sequence in context: A218387 A178857 A003676 * A212298 A064926 A154006

Adjacent sequences:  A033256 A033257 A033258 * A033260 A033261 A033262

KEYWORD

nonn,cons

AUTHOR

Eric W. Weisstein

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified October 24 06:31 EDT 2014. Contains 248502 sequences.