

A140045


Sequence generated from Z/6Z addition table considered as a matrix.


1



1, 40, 495, 8616, 124011, 1905804, 28383615, 427423824, 6403870611, 96118424820, 1441505073735, 21624751859256, 324361491427611, 4865500724823324, 72982158337539855, 1094735196058294944, 16421015247083935011, 246315330264968309700, 3694729496968781349975
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

A140044 = the analogous sequence for Z/5Z; A095897 for Z/4Z and A007070 for Z/3Z.


LINKS

Table of n, a(n) for n=1..19.
Index entries for linear recurrences with constant coefficients, signature (12,93,576,2592,5184,19440).


FORMULA

Let X = the Z/6Z addition table considered as a matrix: [0,1,2,3,4,5; 1,2,3,4,5,0; 2,3,4,5,0,1; 3,4,5,0,1,2; 4,5,0,1,2,3; 5,0,1,2,3,4]. a(n) = term (1,2) of X^n.
G.f.: x*(216*x^4468*x^378*x^2+28*x+1) / ((3*x+1)*(6*x1)*(6*x+1)*(15*x1)*(12*x^21)).  Colin Barker, May 25 2013


EXAMPLE

a(3) = 495 since term (1,2) of X^3 = 495.


MAPLE

a:= n> (Matrix(6, (i, j)> irem(i+j2, 6))^n)[1, 2]:
seq(a(n), n=0..20); # Alois P. Heinz, May 25 2013


CROSSREFS

Cf. A140044, A095897, A007070.
Sequence in context: A271650 A177096 A202902 * A223162 A069079 A093744
Adjacent sequences: A140042 A140043 A140044 * A140046 A140047 A140048


KEYWORD

nonn,easy


AUTHOR

Gary W. Adamson and Roger L. Bagula, May 02 2008


EXTENSIONS

More terms from Colin Barker, May 25 2013


STATUS

approved



