login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A140046 G.f. satisfies: A(x) = x/(1 - A(x+x^2)). 0
1, 1, 3, 10, 41, 186, 922, 4911, 27830, 166656, 1049410, 6922476, 47698148, 342483885, 2557538781, 19829608532, 159393394129, 1326509171669, 11415703608635, 101473987987073, 930688926616454, 8798656042121634 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

LINKS

Table of n, a(n) for n=1..22.

EXAMPLE

G.f.: A(x) = x + x^2 + 3*x^3 + 10*x^4 + 41*x^5 + 186*x^6 + 922*x^7 +...

A(x+x^2) = x + 2*x^2 + 5*x^3 + 20*x^4 + 90*x^5 + 454*x^6 + 2488*x^7 +...

Let B(x) = x + x^2; define B_{n+1}(x) = B( B_{n}(x) ) with B_0(x)=x;

then g.f. A(x) equals the continued fraction:

A(x) = x/(1 - B(x)/(1 - B_2(x)/(1 - B_3(x)/(1 - B_4(x)/(1 - ...)))))

where B_{n}(x) begin:

B_2(x) = x + 2*x^2 + 2*x^3 + x^4 ;

B_3(x) = x + 3*x^2 + 6*x^3 + 9*x^4 + 10*x^5 + 8*x^6 + 4*x^7 + x^8 ;

B_4(x) = x + 4*x^2 + 12*x^3 + 30*x^4 + 64*x^5 + 118*x^6 + 188*x^7 +...;

B_5(x) = x + 5*x^2 + 20*x^3 + 70*x^4 + 220*x^5 + 630*x^6 + 1656*x^7 +...

PROG

(PARI) {a(n)=local(A=x); if(n==0, A=x, for(i=1, n, A=x/(1-subst(A, x, x+x^2 +x*O(x^n))))); polcoeff(A, n)}

CROSSREFS

Cf. A127782.

Sequence in context: A260789 A151082 A151083 * A260772 A325059 A116540

Adjacent sequences: A140043 A140044 A140045 * A140047 A140048 A140049

KEYWORD

nonn

AUTHOR

Paul D. Hanna, May 09 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 5 12:47 EST 2023. Contains 360084 sequences. (Running on oeis4.)