login
A139904
Primes of the form 2x^2+2xy+127y^2.
2
2, 127, 131, 139, 151, 167, 211, 239, 271, 307, 347, 439, 491, 547, 607, 739, 811, 887, 967, 1051, 1151, 1163, 1223, 1231, 1283, 1319, 1327, 1427, 1451, 1531, 1559, 1619, 1823, 1867, 1979, 1987, 2063, 2111, 2239, 2243, 2339, 2371, 2543, 2647
OFFSET
1,1
COMMENTS
Discriminant=-1012. See A139827 for more information.
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
The primes are congruent to {2, 35, 39, 87, 95, 123, 127, 131, 139, 151, 167, 211, 215, 219, 239, 255, 259, 271, 303, 307, 315, 347, 351, 371, 395, 403, 415, 439, 491, 519, 535, 547, 579, 591, 607, 611, 623, 679, 699, 703, 739, 767, 783, 791, 811, 831, 855, 875, 887, 899, 915, 923, 959, 967, 975, 1007} (mod 1012).
MATHEMATICA
QuadPrimes2[2, -2, 127, 10000] (* see A106856 *)
PROG
(Magma) [p: p in PrimesUpTo(3000) | p mod 1012 in [2, 35, 39, 87, 95, 123, 127, 131, 139, 151, 167, 211, 215, 219, 239, 255, 259, 271, 303, 307, 315, 347, 351, 371, 395, 403, 415, 439, 491, 519, 535, 547, 579, 591, 607, 611, 623, 679, 699, 703, 739, 767, 783, 791, 811, 831, 855, 875, 887, 899, 915, 923, 959, 967, 975, 1007]]; // Vincenzo Librandi, Jul 31 2012
CROSSREFS
Sequence in context: A064070 A266993 A364654 * A167414 A065381 A274123
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 02 2008
STATUS
approved