login
A139776
Average of twin primes p3 such that p1^2 + p2^3=p3 and p1^3 + p2^2 = p4, p3 and p4 are average of twin primes. p1 and p2 consecutive primes, p1 < p2.
1
24918, 9270440598450720, 1151315644373474442978, 1166412457712602408182, 1408820228836430919078, 1611036311504881881342, 1839287439769397002278, 1876396650678820877442, 2541675503832771774858, 3760334521638661478022, 13232238501319295512260, 19086564229432581494760, 30269637404459759488308
OFFSET
1,1
LINKS
EXAMPLE
24918 is a term since p1 = 23 and p2 = 29 are consecutive primes such that p1^2 + p2^3 = 24918 and p1^3 + p2^2 = 13008 are averages of twin primes.
MATHEMATICA
a={}; Do[p1=Prime[n]; p2=Prime[n+1]; p3=p1^2+p2^3; p4=p1^3+p2^2; If[PrimeQ[p3-1]&&PrimeQ[p3+1]&&PrimeQ[p4-1]&&PrimeQ[p4+1], AppendTo[a, p3]], {n, 13^5}]; Print[a];
PROG
(PARI) testA139776(p, q)={my(p3=p^2+q^3, p4=p^3+q^2); ispseudoprime(p3-1)&&ispseudoprime(p3+1)&&ispseudoprime(p4-1)&&ispseudoprime(p4+1)} p=3; forprime(q=5, 1e7, if(testA139776(p, q), print1(p^2+q^3", ")); p=q)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Program and more terms from Charles R Greathouse IV Jul 27 2009
STATUS
approved