login
A138717
Average k of twin primes such that k = p1^2 + p2^3, where p1 and p2 are consecutive primes, and p1 < p2.
0
24918, 1235652, 3250531482, 4199242278, 13709099778, 23871182760, 86428949742, 126606734382, 168135540408
OFFSET
1,1
EXAMPLE
Numbers 24917 and 24919 are primes, making 24918 the average of twin primes. Also, 24918 = 23^2 + 29^3. Thus, 24918 is in this sequence. - Tanya Khovanova, Aug 14 2021
MATHEMATICA
a={}; Do[p1=Prime[n]; p2=Prime[n+1]; pp=p1^2+p2^3; If[PrimeQ[pp-1]&&PrimeQ[pp+1], AppendTo[a, pp]], {n, 16^3}]; Print[a];
CROSSREFS
Sequence in context: A252146 A110599 A199857 * A139776 A214013 A252846
KEYWORD
nonn,more
AUTHOR
STATUS
approved