login
A139757
a(n) = (n+1)*(2n+1)^2.
5
1, 18, 75, 196, 405, 726, 1183, 1800, 2601, 3610, 4851, 6348, 8125, 10206, 12615, 15376, 18513, 22050, 26011, 30420, 35301, 40678, 46575, 53016, 60025, 67626, 75843, 84700, 94221, 104430, 115351, 127008, 139425, 152626, 166635, 181476
OFFSET
0,2
COMMENTS
Also the detour index of the (n+1)-antiprism graph and (n+1)-cocktail party graphs for n>=2. - Eric W. Weisstein, Jul 15 2011 and Dec 20 2017
LINKS
Eric Weisstein's World of Mathematics, Antiprism Graph
Eric Weisstein's World of Mathematics, Cocktail Party Graph
Eric Weisstein's World of Mathematics, Detour Index
FORMULA
a(n) = (2n+1) * A000217(2n+1).
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4); G.f.: (1+14*x+9*x^2)/(x-1)^4. - R. J. Mathar, Sep 19 2010
a(n) = Sum_{i=1..2n-1} (n^2 + n*i - i). - Wesley Ivan Hurt, Sep 29 2014
From Amiram Eldar, Jun 28 2020: (Start)
Sum_{n>=0} 1/a(n) = Pi^2/4 - log(4).
Sum_{n>=0} (-1)^n/a(n) = 2*G + log(2) - Pi/2, where G is the Catalan constant (A006752). (End)
MAPLE
A139757:=n->(n+1)*(2*n+1)^2: seq(A139757(n), n=0..30); # Wesley Ivan Hurt, Sep 29 2014
MATHEMATICA
Table[(n + 1) (2 n + 1)^2, {n, 0, 30}] (* Wesley Ivan Hurt, Sep 29 2014 *)
LinearRecurrence[{4, -6, 4, -1}, {18, 75, 196, 405}, {0, 20}] (* Eric W. Weisstein, Dec 20 2017 *)
CoefficientList[Series[(1 + 14 x + 9 x^2)/(-1 + x)^4, {x, 0, 20}], x] (* Eric W. Weisstein, Dec 20 2017 *)
PROG
(Magma) [(n+1)*(2*n+1)^2 : n in [0..30]]; // Wesley Ivan Hurt, Sep 29 2014
(PARI) a(n) = (n+1)*(2*n+1)^2; \\ Altug Alkan, Dec 20 2017
CROSSREFS
Sequence in context: A022145 A284659 A143666 * A285918 A262402 A296363
KEYWORD
easy,nonn
AUTHOR
Odimar Fabeny, May 19 2008
EXTENSIONS
Missing a(0) inserted by R. J. Mathar, Sep 19 2010
STATUS
approved