

A139244


a(0) = 4; a(n) = a(n1)^2  1.


3



4, 15, 224, 50175, 2517530624, 6337960442777829375, 40169742574216538983356186036612890624, 1613608218478824775913354216413699241125577233045500390244103887844987109375
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

This is the next analog of A003096 with different initial value a(0), as starting with a(0) = 2 is A003096 and a(0) = 3 is A003096 with first term omitted. It alternates between even and odd values, specifically between 4 mod 10 and 5 mod 10 and is always composite (by difference of squares factorization).
a(n+2) is divisible by a(n)^2. A007814(a(2 n)) = A153893(n).  Robert Israel, Jul 20 2015


LINKS

Robert Israel, Table of n, a(n) for n = 0..10
A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, The Fibonacci Quarterly, 11 (1973), 429437.
Index entries for sequences of form a(n+1)=a(n)^2 + ...


FORMULA

a(n1) = ceiling(c^(2^n)) where c is a constant between 1 and 2.
More specifically, c=1.9668917617901763653335057202... (sequence A260315).  Chayim Lowen, Jul 17 2015


MAPLE

A[0]:= 4:
for n from 1 to 10 do A[n]:= A[n1]^21 od:
seq(A[i], i=0..10); # Robert Israel, Jul 20 2015


MATHEMATICA

a=4; lst={a}; Do[b=a^21; AppendTo[lst, b]; a=b, {n, 10}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 28 2010 *)


PROG

(PARI) a(n)=if(n, a(n1)^21, 4) \\ Charles R Greathouse IV, Jul 23 2015


CROSSREFS

Cf. A003096, A007814, A153893, A260315.
Sequence in context: A195569 A118908 A153060 * A090115 A051999 A048731
Adjacent sequences: A139241 A139242 A139243 * A139245 A139246 A139247


KEYWORD

easy,nonn


AUTHOR

Jonathan Vos Post, Jun 06 2008


STATUS

approved



