login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A138514 Expansion of q^(-1/8) * eta(q^2)^4 / (eta(q) * eta(q^4)) in powers of q. 4
1, 1, -2, -1, 0, -2, 1, 0, 0, 2, 1, 2, -2, 0, 2, 1, 0, -2, 0, -2, 0, -1, 0, 0, -2, 0, 0, 0, -1, 2, -2, 0, 2, 0, 0, 2, 3, 0, 0, -2, 0, 0, 2, 0, 2, 1, -2, 0, 0, 0, -2, -2, 0, 2, -2, 1, -2, -2, 0, 0, 0, 0, 0, 0, 0, -2, 1, 0, 0, 0, 0, -2, 2, 0, 2, 2, 0, 2, 1, 0, -2, 0, 2, 0, -2, 0, 0, 4, 0, 0, 0, 1, 0, 0, 0, -2, -2, 0, 0, 0, 2, -2, 0, 0, -2 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Number 70 of the 74 eta-quotients listed in Table I of Martin 1996.

A030204, A083650 and A138514 are the same except for signs. - N. J. A. Sloane, May 07 2010

REFERENCES

Y. Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.

LINKS

Table of n, a(n) for n=0..104.

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of f(x) * f(-x^2) = psi(-x) * phi(x) = chi(x) * f(-x^2)^2 = psi(x) * phi(-x^2) = f(x)^2 / chi(x) = f(x)^3 / phi(x) = f(-x^2)^3 / psi(-x) = phi(x)^2 / chi(x)^3 = chi(x)^3 * psi(-x)^2 = (f(x)^3 * psi(-x))^(1/2) = (f(-x^2)^3 * phi(x))^(1/2) in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions.

Expansion of psi(i * x) * psi(-i * x) in powers x^2 where i^2 = 1 and psi() is a Ramanujan theta function. - Michael Somos, Feb 16 2014

Euler transform of period 4 sequence [ 1, -3, 1, -2, ...].

a(n) = b(8*n + 1) where b(n) is multiplicative and b(2^e) = 0^e, b(p^e) = 0 if p == 3, 5, 7 (mod 8) and e odd, b(p^e) = 1 if p == 3 (mod 4) and e even, b(p^e) = (-1)^(e/2) if p == 5 (mod 8) and e even, b(p^e) = e+1 if p == 1 (mod 8) and p = x^2 + 64*y^2, b(p^e) = (-1)^e * (e+1) if p == 1 (mod 8) and p is not of the form x^2 + 64*y^2.

a(9*n + 1) = a(n), a(9*n + 4) = a(9*n + 7) = 0. a(n) = (-1)^n * A030204(n) = (-1)^[(n+1)/2] * A083650(n).

G.f.: Product_{k>0} (1 - x^(2*k))^2 * (1 + x^(2*k - 1)).

EXAMPLE

G.f. = 1 + x - 2*x^2 - x^3 - 2*x^5 + x^6 + 2*x^9 + x^10 + 2*x^11 - 2*x^12 + 2*x^14 + ...

G.f. = q + q^9 - 2*q^17 - q^25 - 2*q^41 + q^49 + 2*q^73 + q^81 + 2*q^89 - 2*q^97 + ...

PROG

(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^4 / eta(x + A) / eta(x^4 + A), n))}

(PARI) {a(n) = local(A, p, e); if( n<0, 0, n = 8*n + 1; A = factor(n); prod(k=1, matsize(A)[1], if(p = A[k, 1], e = A[k, 2]; if( p==2, 0, if( p%8==1, (e+1) * if( qfbclassno( -8 * p) / 4 % 2, (-1)^e, 1), if( e%2==0, (-1)^(e/2 * (p%8==5)))))))) }

(PARI) {a(n) = if( n<0, 0, n = 8*n + 1; (qfrep([1, 0; 0, 64], n) - qfrep([4, 2; 2, 17], n))[n])}

CROSSREFS

Cf. A030204, A083650.

Sequence in context: A190893 A030204 A083650 * A143540 A208664 A030200

Adjacent sequences:  A138511 A138512 A138513 * A138515 A138516 A138517

KEYWORD

sign

AUTHOR

Michael Somos, Mar 22 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 20 08:42 EST 2014. Contains 252241 sequences.