login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A138464 Triangle read by rows: T(n,k) = number of forests on n labeled nodes with k edges (n>=1, 0<=k<=n-1). 17
1, 1, 1, 1, 3, 3, 1, 6, 15, 16, 1, 10, 45, 110, 125, 1, 15, 105, 435, 1080, 1296, 1, 21, 210, 1295, 5250, 13377, 16807, 1, 28, 378, 3220, 18865, 76608, 200704, 262144, 1, 36, 630, 7056, 55755, 320544, 1316574, 3542940, 4782969, 1, 45, 990, 14070, 143325 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,5

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..1275

FORMULA

From Peter Bala, Aug 14 2012: (Start)

T(n+1,k) = sum_{i=0..k} (i+1)^(i-1)*binomial(n,i)*T(n-i,k-i) with T(0,0)=1.

Recurrence equation for row polynomials R(n,t): R(n,t) = sum_{k=0..n-1} (k+1)^(k-1)*binomial(n-1,k)*t^k*R(n-k-1,t) with R(0,t) = R(1,t) = 1.

The production matrix for the row polynomials of the triangle is obtained from A088956:

/...1....t

|...1....1....t

|...3....2....1...t

|..16....9....3...1....t

|.125...64...18...4....1....t

|...

(End)

EXAMPLE

Triangle begins:

1;

1,  1;

1,  3,  3;

1,  6, 15,  16;

1, 10, 45, 110, 125;

MAPLE

T:= proc(n) option remember; if n=0 then 0 else T(n-1) +n^(n-1) *x^n/n! fi end: TT:= proc(n) option remember; expand (T(n) -T(n)^2/2) end: f:= proc(k) option remember; if k=0 then 1 else unapply (f(k-1)(x) +x^k/k!, x) fi end: A:= proc(n, k) option remember; series(f(k)(TT(n)), x, n+1) end: aa:= (n, k)-> coeff (A(n, k), x, n) *n!: a:= (n, k)-> aa(n, n-k) -aa(n, n-k-1): seq (seq (a(n, k), k=0..n-1), n=1..10);  # Alois P. Heinz, Sep 02 2008

MATHEMATICA

t[0, 0] = 1; t[n_ /; n >= 1, k_] /; (0 <= k <= n-1) := t[n, k] = Sum[(i+1)^(i-1)*Binomial[n-1, i]*t[n-i-1, k-i], {i, 0, k}]; t[_, _] = 0; Table[t[n, k], {n, 1, 10}, {k, 0, n-1}] // Flatten (* Jean-Fran├žois Alcover, Jan 14 2014, after Peter Bala *)

CROSSREFS

Row sums give A001858. Rightmost diagonal gives A000272. Cf. A136605.

Rows reflected give A105599. - Alois P. Heinz, Oct 28 2011

Cf. A088956.

Lower diagonals give: A083483, A239910, A240681, A240682, A240683, A240684, A240685, A240686, A240687. - Alois P. Heinz, Apr 11 2014

Sequence in context: A240439 A243211 A199034 * A117279 A234251 A049323

Adjacent sequences:  A138461 A138462 A138463 * A138465 A138466 A138467

KEYWORD

nonn,tabl,look

AUTHOR

N. J. A. Sloane, May 09 2008

EXTENSIONS

More terms from Alois P. Heinz, Sep 02 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 28 09:38 EST 2014. Contains 250305 sequences.