This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A239910 Number of forests with three connected components in the complete graph K_{n}. 5
 0, 0, 1, 6, 45, 435, 5250, 76608, 1316574, 26100000, 587030895, 14780620800, 412069511139, 12604714327296, 419801484375000, 15123782440058880, 586049426860524300, 24307340986526810112, 1074495780444130114509, 50429952000000000000000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Equation (47) of Liu-Chow (1984) also gives the analogous formulas for four and five components. (They should also be entered into the OEIS, in case someone wants to help.) LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..200 C. J. Liu and Yutze Chow, On operator and formal sum methods for graph enumeration problems, SIAM J. Algebraic Discrete Methods, 5 (1984), no. 3, 384--406. MR0752043 (86d:05059). MAPLE f := n-> (n-1)!*n^(n-6)*(n^2+13*n+60)/(8*(n-3)!); [seq(f(n), n=3..20)]; MATHEMATICA Table[(n - 1)! n^(n - 6) (n^2 + 13 n + 60)/(8 (n - 3)!), {n, 1, 20}] (* Vincenzo Librandi, Apr 10 2014 *) PROG (MAGMA) [0, 0] cat [Factorial(n-1)*n^(n-6)*(n^2+13*n+60)/ (8*Factorial(n-3)): n in [3..20]]; // Vincenzo Librandi, Apr 10 2014 CROSSREFS Cf. A000272, A083483. Column m=3 of A105599. A diagonal of A138464. - Alois P. Heinz, Apr 10 2014 Sequence in context: A001879 A019577 A097814 * A228194 A084064 A186925 Adjacent sequences:  A239907 A239908 A239909 * A239911 A239912 A239913 KEYWORD nonn AUTHOR N. J. A. Sloane, Apr 09 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 18 03:25 EDT 2019. Contains 328135 sequences. (Running on oeis4.)