login
A138333
C(n+9, 9)*(n+5)*(-1)^(n+1)*256/5.
0
-256, 3072, -19712, 90112, -329472, 1025024, -2818816, 7028736, -16180736, 34850816, -70946304, 137592832, -255836672, 458422272, -794962432, 1338884096, -2196606720, 3519493120, -5519205120, 8487198720, -12819206400, 19045678080, -27869287680
OFFSET
0,1
COMMENTS
Sixth column of the triangle defined in A123588, eleventh column of the triangle defined in A123583.
FORMULA
a(n) = coefficient of x^10 in the polynomial 1 - T_(n+5)(x)^2, where T_n(x) is the n-th Chebyshev polynomial of the first kind.
G.f.: 256*(x-1)/(x+1)^11.
a(n) = (-1)^(n+1)*256*A054334(n).
PROG
(Magma) [ Binomial(n+9, 9)*(n+5)*(-1)^(n+1)*256/5: n in [0..22] ];
(Magma) k:=5; [ Coefficients(1-ChebyshevT(n+k)^2)[2*k+1]: n in [0..22] ];
(PARI) for(n=0, 22, print1(polcoeff(taylor(256*(x-1)/(x+1)^11, x), n), ", "));
CROSSREFS
Cf. A007318 (Pascal's triangle), A123588, A123583, A054334.
Sequence in context: A235426 A236299 A236296 * A236123 A236120 A205037
KEYWORD
sign
AUTHOR
Klaus Brockhaus, Mar 15 2008
STATUS
approved