login
A138191
Denominator of (n-1)*n*(n+1)/12.
6
1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1
OFFSET
1,2
COMMENTS
Proof of 4-periodicity follows from evaluating (n+3)(n+4)(n+5)/12, subtracting (n-1)n(n+1)/12 and getting n^2+4n+5 which is an integer. - R. J. Mathar, Mar 07 2008
LINKS
FORMULA
From R. J. Mathar, Mar 07 2008: (Start)
a(n) = 1 + (A000292(n-1) mod 2) = a(n-4).
O.g.f.: -1-5/(4(x-1))+1/(4(x+1))-1/(2(x^2+1)). (End)
From Amiram Eldar, Jan 01 2023: (Start)
Multiplicative with a(p^e) = 2 if p = 2 and e = 1, and 1 otherwise.
Dirichlet g.f.: zeta(s)*(1+1/2^s-1/4^s).
Sum_{k=1..n} a(k) ~ (5/4)*n. (End)
EXAMPLE
0, 1/2, 2, 5, 10, 35/2, 28, 42, 60, 165/2, 110, 143, 182, ...
MATHEMATICA
Table[(n^3-n)/12, {n, 120}]//Denominator (* or *) PadRight[{}, 120, {1, 2, 1, 1}] (* Harvey P. Dale, Apr 15 2019 *)
PROG
(Python)
def A138191(n): return (1, 1, 2, 1)[n&3] # Chai Wah Wu, Apr 25 2024
CROSSREFS
KEYWORD
nonn,frac,mult,easy
AUTHOR
Eric W. Weisstein, Mar 04 2008
STATUS
approved