login
A138193
Odd composite numbers n for which A137576((n-1)/2)-1 is divisible by phi(n).
6
9, 15, 25, 27, 33, 39, 49, 55, 57, 63, 81, 87, 95, 111, 119, 121, 125, 135, 143, 153, 159, 161, 169, 175, 177, 183, 201, 207, 209, 225, 243, 249, 287, 289, 295, 297, 303, 319, 321, 329, 335, 343, 351, 361, 369, 375, 391, 393, 407, 415, 417, 423, 447, 489, 497
OFFSET
1,1
COMMENTS
If p is an odd prime then A137576((p-1)/2)=p. Therefore the composite numbers n may be considered as quasiprimes. In particular, if (m,n)=1 we have a natural generalization of the little Fermat theorem: m^(A137576((n-1)/ 2)-1)=1 mod n.
LINKS
EXAMPLE
a(1)=9: A137576(4)=13 and 13-1 is divisible by phi(9)=6.
MATHEMATICA
A137576[n_] := Module[{t}, (t = MultiplicativeOrder[2, 2 n + 1])* DivisorSum[2 n + 1, EulerPhi[#]/MultiplicativeOrder[2, #] &] - t + 1];
okQ[n_] := OddQ[n] && CompositeQ[n] && Divisible[A137576[(n - 1)/2] - 1, EulerPhi[n]];
Reap[For[k = 1, k < 500, k += 2, If[okQ[k], Print[k]; Sow[k]]]][[2, 1]] (* Jean-François Alcover, Jan 11 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, May 04 2008
EXTENSIONS
Extended by Ray Chandler, May 08 2008
STATUS
approved