

A138036


Write n = C(i,2)+C(j,1) with i>j>=0; let L[n] = [i,j]; sequence gives list of pairs L[n], n >= 0.


2



1, 0, 2, 0, 2, 1, 3, 0, 3, 1, 3, 2, 4, 0, 4, 1, 4, 2, 4, 3, 5, 0, 5, 1, 5, 2, 5, 3, 5, 4, 6, 0, 6, 1, 6, 2, 6, 3, 6, 4, 6, 5, 7, 0, 7, 1, 7, 2, 7, 3, 7, 4, 7, 5, 7, 6, 8, 0, 8, 1, 8, 2, 8, 3, 8, 4, 8, 5, 8, 6, 8, 7, 9, 0, 9, 1, 9, 2, 9, 3, 9, 4, 9, 5, 9, 6, 9, 7, 9, 8, 10, 0, 10, 1, 10, 2, 10, 3, 10, 4, 10, 5, 10, 6, 10, 7, 10, 8, 10, 9, 11, 0, 11, 1, 11, 2, 11, 3, 11, 4
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

Each n >= 0 has a unique representation as n = C(i,2)+C(j,1) with i>j>=0. This is the combinatorial number system of degree t = 2. The i values are A002024, the j values A002262.


REFERENCES

D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.3, Eq. (20), p. 360.


LINKS

Table of n, a(n) for n=0..119.


EXAMPLE

The pairs L[0] through L[10] are
[1, 0]
[2, 0]
[2, 1]
[3, 0]
[3, 1]
[3, 2]
[4, 0]
[4, 1]
[4, 2]
[4, 3]
[5, 0]


PROG

(Sage)
def A138036_list(len):
i, j = 0, 1
L = [1, 0]
for _ in range(len):
i += 1
if i == j:
j += 1
i = 0
L.append(j)
L.append(i)
return L
A138036_list(47) # Peter Luschny, May 18 2015


CROSSREFS

Cf. A002024, A002262. See A194847 for degree t=3.
Sequence in context: A061986 A127185 A159780 * A055136 A074397 A082023
Adjacent sequences: A138033 A138034 A138035 * A138037 A138038 A138039


KEYWORD

nonn,tabf


AUTHOR

N. J. A. Sloane, Sep 04 2011


STATUS

approved



