This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A138034 Expansion of (1+3*x^2)/(1-x+x^2). 11
 1, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Essentially a duplicate of A119910: 1, followed by A119910. - Joerg Arndt, Nov 14 2014 LINKS Karem Boubaker and Lin Zhang, Fermat-linked relations for the Boubaker polynomial sequences via Riordan matrices analysis, arXiv preprint arXiv:1203.2082, 2012. - From N. J. A. Sloane, Sep 15 2012 Index entries for linear recurrences with constant coefficients, signature (1,-1). FORMULA a(n) = A119910(n), n>=1. G.f.: (1+3*x^2)/(1-x+x^2). a(n)=a(n-1)-a(n-2), n>2. a(n) = 3*(C(2*n,n) mod 2) + (1/6)*(-(n mod 6) + 2*((n+1) mod 6) + 3*((n+2) mod 6) + ((n+3) mod 6) - 2*((n+4) mod 6) - 3*((n+5) mod 6)), with n>=0. - Paolo P. Lava, Mar 18 2008 MATHEMATICA CoefficientList[Series[(1 + 3*x^2)/(1 - x + x^2), {x, 0, 100}], x] (* Wesley Ivan Hurt, Jan 15 2017 *) CROSSREFS Cf. A135929, A135936, A137276. Sequence in context: A280048 A119910 A130784 * A229216 A087818 A112746 Adjacent sequences:  A138031 A138032 A138033 * A138035 A138036 A138037 KEYWORD sign,easy AUTHOR Karem Boubaker (mmbb11112000(AT)yahoo.fr), Mar 01 2008; corrected Mar 03 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.