login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A137867 Triangular sequence of coefficients of the Misiurewicz polynomial which are made from the Pc Mandelbrot -Julia polynomials A137560 as: Pc(x,n)-Pc(x,m); n<>m. 1
-1, 1, 0, 0, 1, -1, 1, 1, 0, 0, 0, 2, 1, 0, 0, 1, 2, 1, -1, 1, 1, 2, 1, 0, 0, 0, 0, 4, 6, 6, 4, 1, 0, 0, 0, 2, 5, 6, 6, 4, 1, 0, 0, 1, 2, 5, 6, 6, 4, 1, -1, 1, 1, 2, 5, 6, 6, 4, 1, 0, 0, 0, 0, 0, 8, 20, 40, 68, 94, 114, 116, 94, 60, 28, 8, 1, 0, 0, 0, 0, 4, 14, 26, 44, 69, 94, 114, 116, 94, 60, 28, 8, 1, 0, 0, 0, 2, 5, 14, 26, 44, 69, 94, 114, 116, 94, 60, 28, 8 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,12

COMMENTS

Row sums are: {0, 1, 1, 3, 4, 4, 21, 24, 25, 25, 651, 672, 675, 676, 676, 457653, 458304, 458325, 458328, 458329, 458329};

The roots of these polynomials are called Misiurewicz points and they are found in the antenna areas of the Mandelbrot set M.

REFERENCES

Lennart Carleson and Theodore W. Gamelin, Complex Dynamics, Springer, New York, 1993, p. 133ff.

LINKS

Table of n, a(n) for n=1..109.

FORMULA

Pc(x,n)-> Nested ( z^2+x: when z->x): A137560; Pc(x,n)-Pc(x,m); n<>m;

EXAMPLE

{-1, 1},

{0, 0, 1},

{-1, 1, 1},

{0, 0, 0, 2, 1},

{0, 0, 1, 2, 1},

{-1, 1, 1, 2, 1},

{0, 0, 0, 0, 4, 6, 6, 4, 1},

{0, 0, 0, 2, 5, 6, 6, 4, 1},

{0, 0, 1, 2, 5, 6, 6, 4, 1},

{-1, 1, 1, 2, 5, 6, 6, 4, 1},

{0, 0, 0, 0, 0, 8, 20, 40, 68, 94, 114, 116, 94, 60, 28, 8, 1},

{0, 0, 0, 0, 4, 14, 26, 44, 69, 94, 114, 116, 94, 60, 28, 8, 1},

{0, 0, 0, 2,5, 14, 26, 44, 69, 94, 114, 116, 94, 60, 28, 8, 1},

{0, 0, 1, 2, 5, 14, 26, 44, 69, 94, 114, 116, 94, 60, 28, 8, 1},

{-1, 1, 1, 2, 5, 14, 26, 44, 69, 94, 114, 116, 94, 60, 28, 8, 1},

{0, 0, 0, 0, 0, 0, 16, 56, 152, 376, 844, 1744, 3340, 5976, 10040, 15856, 23460, 32398, 41658, 49700, 54746, 55308, 50788, 41944, 30782, 19788, 10948, 5096, 1932, 568, 120, 16, 1},

{0, 0, 0, 0, 0, 8, 36, 96, 220, 470, 958, 1860, 3434, 6036, 10068, 15864, 23461, 32398, 41658, 49700, 54746, 55308, 50788, 41944, 30782, 19788, 10948, 5096, 1932, 568, 120, 16, 1},

{0, 0, 0, 0, 4, 14, 42, 100, 221, 470, 958, 1860, 3434, 6036, 10068, 15864, 23461, 32398, 41658, 49700, 54746, 55308, 50788, 41944, 30782, 19788, 10948, 5096, 1932, 568, 120, 16, 1},

{0, 0, 0, 2, 5, 14, 42, 100, 221, 470, 958, 1860, 3434, 6036, 10068, 15864, 23461, 32398, 41658, 49700, 54746, 55308, 50788, 41944, 30782, 19788, 10948, 5096, 1932, 568, 120, 16, 1},

{0, 0, 1, 2, 5, 14, 42, 100, 221, 470, 958, 1860, 3434, 6036, 10068, 15864, 23461, 32398, 41658, 49700, 54746, 55308, 50788, 41944, 30782, 19788, 10948, 5096, 1932, 568, 120, 16, 1},

{-1, 1, 1, 2, 5, 14, 42, 100, 221, 470, 958, 1860, 3434, 6036, 10068, 15864, 23461, 32398, 41658, 49700, 54746, 55308, 50788, 41944, 30782, 19788, 10948, 5096, 1932, 568, 120, 16, 1}

MATHEMATICA

Clear[f, g, h, x]; f[z_] = z^2 + x; g = Join[{1}, ExpandAll[NestList[f, x, 5]]]; h = Union[Flatten[Table[Flatten[Table[If[n == m, {}, ExpandAll[g[[ n]] - g[[m]]]], {m, 1, n}]], {n, 1, Length[g]}]]]; a = Table[CoefficientList[h[[n]], x], {n, 1, Length[h]}]; Flatten[a] Table[Apply[Plus, CoefficientList[h[[n]], x]], {n, 1, Length[h]}];

CROSSREFS

Sequence in context: A029409 A014674 A015339 * A324734 A111143 A004197

Adjacent sequences:  A137864 A137865 A137866 * A137868 A137869 A137870

KEYWORD

tabl,uned,sign

AUTHOR

Roger L. Bagula, Apr 29 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 14:50 EDT 2019. Contains 323443 sequences. (Running on oeis4.)