The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A137869 Primes p with property that (p - previous prime) >= 6 and (next prime - p) >= 6. 4
 53, 89, 157, 173, 211, 251, 257, 263, 293, 331, 337, 359, 367, 373, 389, 409, 449, 479, 509, 541, 547, 557, 563, 577, 587, 593, 607, 631, 653, 683, 691, 701, 709, 719, 727, 733, 751, 787, 797, 839, 919, 929, 947, 953, 977, 983, 991, 997, 1039, 1069, 1103, 1109, 1117 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Robert Israel, Table of n, a(n) for n = 1..10000 MAPLE M:=1000; t1:=[]; for i from 2 to M do p:=ithprime(i); o:=prevprime(p); q:=nextprime(p); if p-o >= 6 and q-p >= 6 then t1:=[op(t1), p]; fi; od: t1; # N. J. A. Sloane MATHEMATICA lst={}; Do[p=Prime[n]; If[ !PrimeQ[p-2]&&!PrimeQ[p+2]&&!PrimeQ[p-4]&&!PrimeQ[p+4], AppendTo[lst, p]], {n, 6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jul 20 2009 *) PROG (PARI) p=q=2; forprime(r=2, 999, r-q>4 & q-p>4 & print1(q", "); p=q; q=r) \\ M. F. Hasler, May 02 2009 (MAGMA) [p:p in PrimesInInterval(3, 1200)|p-PreviousPrime(p) ge 6 and NextPrime(p)-p ge 6]; // Marius A. Burtea, Aug 11 2019 CROSSREFS Sequence in context: A272367 A119289 A124282 * A096697 A033234 A266845 Adjacent sequences:  A137866 A137867 A137868 * A137870 A137871 A137872 KEYWORD nonn AUTHOR Vladimir Joseph Stephan Orlovsky, Apr 29 2008 EXTENSIONS Edits and more terms from N. J. A. Sloane, May 02 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 13:08 EST 2021. Contains 349581 sequences. (Running on oeis4.)