The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A136584 G.f. A(x) satisfies: 1+x = Sum_{n>=0} C(2^n,n) * x^n / A(x)^(2^n). 0
 1, 1, 3, 31, 1327, 170211, 68333813, 89675072255, 397525147082217, 6103188627225900995, 331088233835064606501621, 64490029272314754165301653295, 45679131008965219349145151231118965 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS FORMULA G.f. A(x) satisfies: 1+x = Sum_{n>=0} log( (1 + 2^n*x)/A(x) )^n / n!. EXAMPLE G.f. A(x) = 1 + x + 3*x^2 + 31*x^3 + 1327*x^4 + 170211*x^5 + ... 1 + x = Sum_{n>=0} C(2^n,n) * x^n * A(x)^(-2^n) = (1 - x - 2x^2 - 26x^3 - 1264x^4 - 167480x^5 - 67988870x^6 -...) + .2x*(1 - 2x - 3x^2 - 48x^3 - 2472x^4 - 332328x^5 -...) + ...6x^2*(1 - 4x - 2x^2 - 84x^3 - 4743x^4 - 654480x^5 -...) + .......56x^3*(1 - 8x + 12x^2 - 152x^3 - 8810x^4 -...) + ..........1820x^4*(1 - 16x + 88x^2 - 496x^3 - 15044x^4 -...) + ..............201376x^5*(1 - 32x + 432x^2 - 3808x^3 -...) + ..................74974368x^6*(1 - 64x + 1888x^2 +...) + ... PROG (PARI) {a(n)=local(A=[1, 1]); if(n<0, 0, if(n==0, 1, for(i=0, n-1, A=concat(A, 0); A[ #A]=Vec(sum(n=0, #A-1, log((1+2^n*x)/Ser(A))^n/n!))[ #A]); A[n+1]))} CROSSREFS Cf. A014070 (C(2^n, n)). Sequence in context: A029729 A319253 A328811 * A194937 A141153 A144906 Adjacent sequences: A136581 A136582 A136583 * A136585 A136586 A136587 KEYWORD nonn AUTHOR Paul D. Hanna, Jan 09 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 29 13:38 EST 2023. Contains 359923 sequences. (Running on oeis4.)