login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A141153 G.f.: A(x) = Sum_{n>=1} a(n-1)*x^(2*n)/(2*n) = log( Sum_{n>=0} a(n)*x^(2*n)/(n!*2^n) ). 1
1, 1, 3, 31, 1609, 626097, 2407996027, 110977327013551, 71594581089754557777, 738994182797188307880872353, 137301106425308220881681919632979379, 510195974626378486585193070538567102152265599 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,3

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 2..41

FORMULA

a(n+1) = n!*Sum_{k=0..n} 2^(n-k)/k!*a(k)*a(n-k), (offset 0). - Vladeta Jovovic, Jul 08 2008

E.g.f.: Sum_{n>=0} a(n)*x^n/n! = exp( Sum_{n>=1} 2^(n-1)*a(n-1)*x^n/n ) (offset 0). [From Paul D. Hanna, Aug 09 2009]

a(n) ~ c * 2^(n*(n-4)/2) * Pi^(n/2) * n^((n-2)^2/2 - 1/12) / exp(n*(3*n-8)/4), where c = 2.294946359935163474113719941809113139554600453... - Vaclav Kotesovec, Feb 27 2014

EXAMPLE

G.f.: A(x) = x^2/2 + x^4/4 + 3*x^6/6 + 31*x^8/8 + 1609*x^10/10 + 626097*x^12/12 +...

exp(A(x)) = 1 + x^2/2 + 3*x^4/8 + 31*x^6/48 + 1609*x^8/384 + 626097*x^10/3840 +...

Contribution from Paul D. Hanna, Aug 09 2009: (Start)

E.g.f.: E(x) = 1 + x + 3x^2/2! + 31*x^3/3! + 1609*x^4/4! +...(offset 0);

E(x) = exp(1*x + 1*2*x^2/2 + 3*2^2*x^3/3 + 31*2^3*x^4/4 + 1609*2^4*x^5/5 +...) (End)

MATHEMATICA

nmax = 20; b = ConstantArray[0, nmax+2]; b[[1]] = 1; b[[2]] = 1; Do[b[[n+2]] = n!*Sum[2^(n-k)/k!*b[[k+1]]*b[[n-k+1]], {k, 0, n}], {n, 1, nmax}]; b (* Vaclav Kotesovec, Feb 27 2014 *)

PROG

(PARI) {a(n)=if(n==0, 1, n!*2^n*polcoeff(exp(sum(k=0, n-1, a(k)*x^(2*k+2)/(2*k+2))+O(x^(2*n+2))), 2*n))}

Contribution from Paul D. Hanna, Aug 09 2009: (Start)

(PARI) /* E.g.f. exp(Sum_{n>=1} 2^(n-1)*a(n-1)*x^n/n) with offset 0: */

{a(n)=n!*polcoeff(exp(sum(m=1, n, 2^(m-1)*a(m-1)*x^m/m)+x*O(x^n)), n)} (End)

CROSSREFS

Cf. A000178, A002109.

Sequence in context: A328811 A136584 A194937 * A144906 A081789 A066976

Adjacent sequences: A141150 A141151 A141152 * A141154 A141155 A141156

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jun 11 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 23:44 EST 2022. Contains 358485 sequences. (Running on oeis4.)