The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A194937 G.f. satisfies: A(x) = Sum_{n>=0} x^n*A(x)^n/sf(n) where A(x) = Sum_{n>=0} a(n)*x^n/sf(n), and sf(n) = Product_{k=0..n} k! is the superfactorial of n (A000178). 0
 1, 1, 3, 31, 1393, 330361, 488337121, 5197945772881, 452395544496860161, 360573039112103480718721, 2914843277842193790386417088001, 262261378512171017948642290003977004801, 285983731923953608933716749772942709840131379201 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS FORMULA G.f.: A(x) = (1/x)*Series_Reversion(x/F(x)) where F(x) = Sum_{n>=0} x^n/sf(n) and sf(n) = Product_{k=0..n} k!. EXAMPLE G.f.: A(x) = 1 + x + 3*x^2/(1!*2!) + 31*x^3/(1!*2!*3!) + 1393*x^4/(1!*2!*3!*4!) + 330361*x^5/(1!*2!*3!*4!*5!) + 488337121*x^6/(1!*2!*3!*4!*5!*6!) +... where A(x) = 1 + x*A(x) + x^2*A(x)^2/(1!*2!) + x^3*A(x)^3/(1!*2!*3!) + x^4*A(x)^4/(1!*2!*3!*4!) +... PROG (PARI) {a(n)=local(F=sum(m=0, n, x^m/prod(k=0, m, k!)+x*O(x^n))); prod(k=0, n, k!)*polcoeff(1/x*serreverse(x/F), n)} (PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, x^m*(A+x*O(x^n))^m/prod(k=0, m, k!))); prod(k=0, n, k!)*polcoeff(A, n)} CROSSREFS Cf. A000178. Sequence in context: A319253 A328811 A136584 * A141153 A144906 A081789 Adjacent sequences: A194934 A194935 A194936 * A194938 A194939 A194940 KEYWORD nonn AUTHOR Paul D. Hanna, Sep 05 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 29 15:06 EST 2023. Contains 359923 sequences. (Running on oeis4.)