OFFSET
1,3
COMMENTS
a(n) is the number of complete squares that fit inside the circle with diameter n, drawn on squared paper.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
FORMULA
a(n) = 4 * Sum_{k=1..floor(n/2)} floor(sqrt((n/2)^2 - k^2)).
a(n) = 4 * A136483(n).
a(n) = 2 * A136513(n).
Lim_{n -> oo} a(n)/(n^2) -> Pi/4 (A003881).
a(n) = [x^(n^2)] (theta_3(x^4) - 1)^2 / (1 - x). - Ilya Gutkovskiy, Nov 24 2021
EXAMPLE
a(3) = 4 because a circle centered at the origin and of radius 3/2 encloses (-1,-1), (-1,1), (1,-1), (1,1).
MATHEMATICA
Table[4*Sum[Floor[Sqrt[(n/2)^2 - k^2]], {k, Floor[n/2]}], {n, 100}]
PROG
(Magma)
A136485:= func< n | n le 1 select 0 else 4*(&+[Floor(Sqrt((n/2)^2-j^2)): j in [1..Floor(n/2)]]) >;
[A136485(n): n in [1..100]]; // G. C. Greubel, Jul 29 2023
(SageMath)
def A136485(n): return 4*sum(floor(sqrt((n/2)^2-k^2)) for k in range(1, (n//2)+1))
[A136485(n) for n in range(1, 101)] # G. C. Greubel, Jul 29 2023
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Glenn C. Foster (gfoster(AT)uiuc.edu), Jan 02 2008
STATUS
approved