login
A323189
Number of n-step point-symmetrical self-avoiding walks on the square lattice.
5
4, 4, 12, 12, 36, 36, 100, 100, 284, 276, 780, 764, 2148, 2084, 5868, 5692, 15956, 15436, 43300, 41812, 117100, 112916, 316076, 304524, 851612, 819372, 2290932, 2203132, 6154284, 5912572, 16514988, 15859820, 44268460, 42480972, 118562580, 113738396, 317268516
OFFSET
1,1
COMMENTS
Total number of walks as counted in A001411 that have a point of symmetry.
Note that for k > 4, we observe a(2k) < a(2k-1). This can be understood by considering interference between the parts at both sides of the point of symmetry (see illustration).
LINKS
Bert Dobbelaere, C++ program
Brian Hayes, How to avoid yourself, American Scientist 86 (1998) 314-319.
FORMULA
A037245(n) = (A001411(n) + A323188(n) + a(n) + 4) / 16.
A151538(n) = (A001411(n) + a(n)) / 8.
MATHEMATICA
A001411 = Import["https://oeis.org/A001411/b001411.txt", "Table"][[All, 2]];
A151538 = Import["https://oeis.org/A151538/b151538.txt", "Table"][[All, 2]];
a[n_] := 8 A151538[[n]] - A001411[[n+2]];
Array[a, 60] (* Jean-François Alcover, Sep 17 2019 *)
CROSSREFS
KEYWORD
nonn,walk
AUTHOR
Bert Dobbelaere, Jan 06 2019
STATUS
approved