OFFSET
0,2
COMMENTS
FORMULA
Equals the matrix square of triangle A136467.
Diagonals: T(n+1,n) = 2*4^n; T(n+2,n) = 2*8^n*(2^(n+2) + n-1).
EXAMPLE
Triangle T begins:
1;
2, 1;
6, 8, 1;
56, 128, 32, 1;
1820, 6048, 2176, 128, 1;
201376, 912128, 419328, 34816, 512, 1;
74974368, 449708544, 249300992, 26198016, 548864, 2048, 1;
94525795200, 739136655360, 477013868544, 59943682048, 1604059136, 8650752, 8192, 1;
409663695276000, 4132411271661568, 3028532448264192, 439222754869248, 14159357935616, 98723430400, 136839168, 32768, 1; ...
Column 0 of T^m is given by: [T^m](n,0) = C(m*2^n, n) for n>=0.
PROG
(PARI) {T(n, k)=local(M=matrix(n+1, n+1, r, c, binomial(r*2^(c-2), c-1)), P); P=matrix(n+1, n+1, r, c, binomial((r+1)*2^(c-2), c-1)); ((P~*M~^-1)^2)[n+1, k+1]}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Dec 31 2007
STATUS
approved