The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A217877 Triangle read by rows: minimum inversion terminator in rooted labeled trees. 1
 1, 2, 1, 6, 8, 2, 24, 75, 20, 6, 120, 864, 216, 72, 24, 720, 12005, 2744, 882, 336, 120, 5040, 196608, 40960, 12288, 4608, 1920, 720, 40320, 3720087, 708588, 196830, 69984, 29160, 12960, 5040, 362880, 80000000, 14000000, 3600000, 1200000, 480000, 216000, 100800, 40320 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 2,2 COMMENTS T(n,k) is the number of trees on vertex set [0,n-1], rooted at 0, with minimum inversion terminator = k if k>=1, with no inversion terminators if k=0. An inversion is a pair i,j of vertices with j a descendant of i and i>j; j is then an inversion terminator. LINKS Andrew Howroyd, Table of n, a(n) for n = 2..1276 FORMULA T(n,0) = (n-1)!, T(n,k) = k!*(n-k-1)*n^(n-k-2) for 1<=k<=n-2. Proof. For any given increasing tree T on [0,k], the number of rooted-at-0 trees on [0,n-1] that contain T is (k+1)n^(n-k-2) [J. W. Moon, Counting Labelled Trees (1970), Sec. 6.2]. Hence, since there are k! increasing trees on [0,k] [R. H. Stanley, Enumerative Combinatorics, Vol. 1, (1986), Sec. 1.3.16], the number of trees on [0,n-1] that contain *some* increasing tree on [0,k] is (k+1)!n^(n-k-2). But the minimum inversion terminator is k precisely when the tree contains some increasing tree on [0,k-1] but none on [0,k]. The number of such trees is therefore k!n^(n-k-1) - (k+1)!n^(n-k-2) = T(n,k) (for k>=1). QED. This gives a nice combinatorial interpretation of the identity n^(n-2) = (n-1)! + Sum_{k=1..n-2} k!(n-k-1)n^(n-k-2). The identity is easy to establish analytically, of course, because the sum is telescoping. EXAMPLE Triangle starts at row n=2: 1; 2, 1; 6, 8, 2; 24, 75, 20, 6; 120, 864, 216, 72, 24; 720, 12005, 2744, 882, 336, 120; 5040, 196608, 40960, 12288, 4608, 1920, 720; ... T(4,2)=2 counts 0->3->2, 0->1 and 0->1->3->2, in both of which the minimum (and only) inversion terminator is 2. MATHEMATICA Table[If[k==0, (n-1)!, k!(n-k-1)n^(n-k-2)], {n, 2, 12}, {k, 0, n-2}] PROG (PARI) T(n, k) = {if(!k, (n-1)!, k!*(n-k-1)*n^(n-k-2))} { for(n=2, 10, for(k=0, n-2, print1(T(n, k), ", ")); print) } \\ Andrew Howroyd, Apr 28 2020 CROSSREFS Row sums give A000272. Sequence in context: A113374 A136470 A220884 * A138510 A026215 A026220 Adjacent sequences: A217874 A217875 A217876 * A217878 A217879 A217880 KEYWORD nonn,tabl AUTHOR David Callan, Oct 14 2012 EXTENSIONS Terms a(38) and beyond from Andrew Howroyd, Apr 28 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 6 18:00 EST 2023. Contains 360111 sequences. (Running on oeis4.)