This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A136117 Pentagonal numbers (A000326) which are the sum of 2 other positive pentagonal numbers. 6
 70, 92, 852, 925, 1247, 1426, 1926, 2625, 3577, 5192, 6305, 6501, 7107, 7740, 7957, 8177, 8626, 9560, 10292, 12927, 13207, 14652, 15555, 16172, 18095, 20475, 20827, 21901, 22265, 22632, 23002, 23751, 24130, 28497, 29330, 31032, 33227, 33675 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS It is conjectured that every integer and hence every pentagonal number, greater than 33066, hence greater than A000326(149) = 33227, can be represented as the sum of three pentagonal numbers. - Jonathan Vos Post, Dec 18 2007 LINKS FORMULA a(n)=A000326(A136116(n))=A000326(m)+A136114(m) where m is the index of the n-th nonzero term in A136114 or A136115. EXAMPLE a(1)=70=P(7) is the least pentagonal number which can be written as sum of two other pentagonal numbers, P(7)=P(5)+P(5). PROG (PARI) P(n)=n*(3*n-1)>>1 /* a.k.a. A000326 */ isPent(t)=P(sqrtint(t<<1\3)+1)==t for(i=1, 299, for(j=1, (i+1)\sqrt(2), isPent(P(i)-P(j)) && print1(P(i)", ") || next(2))) /* The following is much faster, at the cost of implementing sum2sqr(), cf. A133388*/ A136117next(i)=i=sqrtint(i\3*2)*6+5; until(0, for(j=2, #t=sum2sqr((i+=6)^2+1), t[j]%6==[5, 5] && break(2))); i^2\24 A136117vect(n, i)=vector(n, j, i=A136117next(i)) /* 2nd arg =0 by default but allows one to start elsewhere */ A136117(n, i)=until(!n--, i=A136117next(i)); i \\ M. F. Hasler, Dec 25 2007 CROSSREFS Cf. A000326, A136112-A136118, A007527. Sequence in context: A036191 A165632 A295807 * A224553 A156718 A007621 Adjacent sequences:  A136114 A136115 A136116 * A136118 A136119 A136120 KEYWORD nonn AUTHOR M. F. Hasler, Dec 15 2007; corrected Dec 25 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 18 02:23 EDT 2019. Contains 328135 sequences. (Running on oeis4.)