|
|
A136026
|
|
Smallest prime of the form (2n+1)p + 2n with p prime.
|
|
35
|
|
|
11, 19, 41, 53, 43, 103, 59, 67, 113, 83, 137, 149, 107, 173, 433, 131, 139, 443, 233, 163, 257, 179, 281, 293, 1019, 211, 439, 227, 353, 487, 251, 389, 401, 827, 283, 1021, 449, 307, 631, 647, 331, 509, 347, 1601, 727, 557, 379, 1163, 593, 2423, 617, 419, 641
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
The associated p are in A136027.
|
|
LINKS
|
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
|
|
EXAMPLE
|
a(1)=11 because 11 is smallest prime p such that (p-2)/3 is prime.
a(2)=19 because 19 is smallest prime p such that (p-4)/5 is prime.
a(3)=41 because 41 is smallest prime p such that (p-6)/7 is prime.
|
|
MATHEMATICA
|
a = {}; Do[k = 1; While[ !PrimeQ[(Prime[k] - 2n)/(2n + 1)], k++ ]; AppendTo[a, Prime[k]], {n, 1, 100}]; a
|
|
PROG
|
(PARI) a(n)=my(t); forprime(p=2, , if(isprime(t=2*n*(p+1)+p), return(t))) \\ Charles R Greathouse IV, Mar 21 2013
|
|
CROSSREFS
|
Cf. A136019, A136020, A136027.
Sequence in context: A271840 A076853 A167475 * A033201 A154386 A066738
Adjacent sequences: A136023 A136024 A136025 * A136027 A136028 A136029
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Artur Jasinski, Dec 10 2007
|
|
EXTENSIONS
|
Edited by R. J. Mathar, May 17 2009
|
|
STATUS
|
approved
|
|
|
|