

A136027


Smallest prime of the form (p2n)/(2n+1) with p prime.


35



3, 3, 5, 5, 3, 7, 3, 3, 5, 3, 5, 5, 3, 5, 13, 3, 3, 11, 5, 3, 5, 3, 5, 5, 19, 3, 7, 3, 5, 7, 3, 5, 5, 11, 3, 13, 5, 3, 7, 7, 3, 5, 3, 17, 7, 5, 3, 11, 5, 23, 5, 3, 5, 5, 3, 5, 7, 3, 11, 7, 3, 3, 5, 5, 3, 5, 5, 3, 11, 3, 3, 13, 3, 11, 11, 7, 3, 5, 5, 3, 5, 3, 11, 5, 3, 3, 5, 5
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The associated p are in A136026.


LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 1..10000


EXAMPLE

a(1)=3 because 3 is smallest prime of the form (p2)/3; in this case prime(k)=11.
a(2)=3 because 3 is smallest prime of the form (p4)/5; in this case prime(k)=19.
a(3)=5 because 5 is smallest prime of the form (p6)/7; in this case prime(k)=41.


MATHEMATICA

a = {}; Do[k = 1; While[ !PrimeQ[(Prime[k]  2n)/(2n + 1)], k++ ]; AppendTo[a, (Prime[k]  2n)/(2n + 1)], {n, 1, 100}]; a


PROG

(PARI) a(n)=forprime(p=2, , if(isprime(2*n*(p+1)+p), return(p))) \\ Charles R Greathouse IV, Mar 21 2013


CROSSREFS

Cf. A136019, A136020, A136026.
Sequence in context: A071182 A197100 A258642 * A238371 A133772 A265182
Adjacent sequences: A136024 A136025 A136026 * A136028 A136029 A136030


KEYWORD

nonn,easy


AUTHOR

Artur Jasinski, Dec 10 2007


EXTENSIONS

Edited by R. J. Mathar, May 17 2009


STATUS

approved



