login
A271840
Primes of the form n^3 + 2n^2 + 5n + 11.
1
11, 19, 37, 71, 127, 211, 487, 691, 947, 2087, 3217, 3911, 6581, 7687, 10259, 15107, 17011, 19069, 23671, 26227, 28961, 67411, 83431, 130261, 182179, 270667, 283411, 310087, 324031, 353161, 368359, 383987, 400051, 505927, 544979, 565237, 629011, 651289, 721267
OFFSET
1,1
EXAMPLE
n = 5, n^3 + 2*n^2 + 5*n + 11 = 211 that is prime.
n = 7, n^3 + 2*n^2 + 5*n + 11 = 487 that is prime.
MAPLE
A271840:= n-> (n^3+2*n^2+5*n+11): select(isprime, [seq((A271840 (n), n=0..200))]);
MATHEMATICA
Select[Table[n^3 + 2*n^2 + 5*n + 11, {n, 0, 200}], PrimeQ]
PROG
(PARI) for(n=0, 200, k = n^3+2*n^2+5*n+11; if(isprime(k), print1(k, " ")))
(Magma) [k: n in [0..100] | IsPrime(k) where k is n^3+2*n^2+5*n+11];
CROSSREFS
Intersection of A000040 and A271779.
Sequence in context: A117873 A321568 A271779 * A076853 A167475 A136026
KEYWORD
nonn,easy
AUTHOR
K. D. Bajpai, Apr 15 2016
STATUS
approved