This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A135538 Number of triples in all permutations of order n that are collinear modulo n. 3
 0, 0, 0, 6, 32, 400, 2304, 35280, 322560, 3888000, 48384000, 731808000, 9858723840, 161902540800, 2628760780800, 43181994240000, 876764528640000, 16124496740352000, 358721232629760000, 6933770723303424000, 168738115888742400000, 3644128675321085952000, 94201965756599500800000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..400 L. Li, Collinear triples in permutations, arXiv:0802.0572 [math.CO], 2008. FORMULA For n>=3, a(n) = (n-3)! * A146557(n). EXAMPLE For example, in a permutation p=[5,2,4,3,1], a triple of points { (2,p(2)=2), (4,p(4)=3), (5,p(5)=1) } is collinear, since they are located on the line: x + 3*y == 3 (mod 5). MATHEMATICA f[n_] := n*Sum[ Sum[ (n - i - j)*( n*GCD[i, j, n - i - j] - GCD[i, n] - GCD[j, n] - GCD[i + j, n] + 2 ) , {j, 1, n - i}] , {i, 1, n}]; Join[{0, 0, 0}, Table[(n - 3)!*f[n], {n, 3, 25}]] (* G. C. Greubel, Oct 18 2016 *) PROG (PARI) a(n) = if(n<3, 0, (n-3)! * n * sum(i=1, n, sum(j=1, n-i-1, (n-i-j) * (n*gcd([i, j, n-i-j]) - gcd(i, n) - gcd(j, n) - gcd(i+j, n) + 2) ))) CROSSREFS Sequence in context: A183681 A185386 A276351 * A296314 A222605 A290790 Adjacent sequences:  A135535 A135536 A135537 * A135539 A135540 A135541 KEYWORD nonn AUTHOR R. J. Mathar, Feb 22 2008, corrected Oct 24 2008 EXTENSIONS Edited and extended by Max Alekseyev, Oct 31 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 17 02:33 EST 2019. Contains 320200 sequences. (Running on oeis4.)