OFFSET
0,1
COMMENTS
Galois numbers for 5-dimensional vector space, defined to be total number of subspaces in a 5-dimensional vector space over GF(n), when n is a prime power.
LINKS
Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1)
FORMULA
a(n) = 2(3 + 2 n + 3 n^2 + 3 n^3 + 3 n^4 + n^5 + n^6) for n>=0.
G.f.: 2*(3 - 5*x + 138*x^2 + 254*x^3 + 287*x^4 + 39*x^5 + 4*x^6)/(1 - x)^7. - Ilya Gutkovskiy, Sep 16 2016
MATHEMATICA
GaloisNumber[n_, q_] := Sum[QBinomial[n, m, q], {m, 0, n}]; Table[
GaloisNumber[5, n], {n, 0, 30}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Artur Jasinski, Aug 31 2016
EXTENSIONS
Edited by Robert Israel, Sep 23 2016
STATUS
approved