login
A276351
a(n) = 2*(3 + 2 n + 3 n^2 + 3 n^3 + 3 n^4 + n^5 + n^6).
0
6, 32, 374, 2664, 12278, 42176, 118182, 285704, 617894, 1225248, 2266646, 3961832, 6605334, 10581824, 16382918, 24625416, 36070982, 51647264, 72470454, 99869288, 135410486, 180925632, 238539494, 310699784, 400208358, 510253856, 644445782, 806850024, 1002025814, 1235064128, 1511627526
OFFSET
0,1
COMMENTS
Galois numbers for 5-dimensional vector space, defined to be total number of subspaces in a 5-dimensional vector space over GF(n), when n is a prime power.
FORMULA
a(n) = 2(3 + 2 n + 3 n^2 + 3 n^3 + 3 n^4 + n^5 + n^6) for n>=0.
G.f.: 2*(3 - 5*x + 138*x^2 + 254*x^3 + 287*x^4 + 39*x^5 + 4*x^6)/(1 - x)^7. - Ilya Gutkovskiy, Sep 16 2016
MATHEMATICA
GaloisNumber[n_, q_] := Sum[QBinomial[n, m, q], {m, 0, n}]; Table[
GaloisNumber[5, n], {n, 0, 30}]
CROSSREFS
Sequence in context: A350109 A185386 A368287 * A135538 A296314 A222605
KEYWORD
nonn
AUTHOR
Artur Jasinski, Aug 31 2016
EXTENSIONS
Edited by Robert Israel, Sep 23 2016
STATUS
approved