login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A135541 a(n) = 2*a(n-1) - a(n-2) + 2*a(n-3), with a(0) = 2, a(1) = 2. 1
0, 2, 7, 12, 21, 44, 91, 180, 357, 716, 1435, 2868, 5733, 11468, 22939, 45876, 91749, 183500, 367003, 734004, 1468005, 2936012, 5872027, 11744052, 23488101, 46976204, 93952411, 187904820, 375809637, 751619276, 1503238555, 3006477108 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (2,-1,2).

FORMULA

From R. J. Mathar, Feb 23 2008: (Start)

O.g.f.: -7/[5(2x-1)]-(4x+7)/[5(x^2+1)].

a(n) = [7*2^n-(-1)^[n/2]*A010712(n+1)]/5 . (End)

a(n) = (1/10)*( 7*2^(n+1) - (7 - 4*I)*I^n - (7 + 4*I)*(-I)^n ), with n>=0 and I=sqrt(-1) - Paolo P. Lava, Jun 09 2008

E.g.f.: (1/5)*( 7*cosh(2*x) + 7*sinh(2*x) - 7*cos(x) - 4*sin(x) ). - G. C. Greubel, Oct 18 2016

MATHEMATICA

LinearRecurrence[{2, -1, 2}, {0, 2, 7}, 40] (* Vincenzo Librandi, Jun 17 2012 *)

PROG

(MAGMA) I:=[0, 2, 7]; [n le 3 select I[n] else 2*Self(n-1)-Self(n-2)+2*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jun 17 2012

CROSSREFS

Cf. A007909, A007910, A016029, A134658.

Sequence in context: A137401 A119713 A213041 * A288656 A180804 A122264

Adjacent sequences:  A135538 A135539 A135540 * A135542 A135543 A135544

KEYWORD

nonn

AUTHOR

Paul Curtz, Feb 22 2008

EXTENSIONS

More terms from R. J. Mathar, Feb 23 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 12 20:04 EST 2017. Contains 295954 sequences.