OFFSET
1,1
FORMULA
Positive integers n such that A195860(n)=11.
EXAMPLE
6^1=6 is a multiple of Sum_digits(6)=6
6^2=36 is a multiple of Sum_digits(36)=9
6^3=216 is a multiple of Sum_digits(216)=9
6^4=1296 is a multiple of Sum_digits(1296)=18
6^5=7776 is a multiple of Sum_digits(7776)=27
6^6=46656 is a multiple of Sum_digits(46656)=27
6^7=279936 is a multiple of Sum_digits(279936)=36
6^8=1679616 is a multiple of Sum_digits(1679616)=36
6^9=10077696 is a multiple of Sum_digits(10077696)=36
6^10=60466176 is a multiple of Sum_digits(60466176)=36
6^11=362797056 is not a multiple of Sum_digits(362797056)=45
MAPLE
readlib(log10); P:=proc(n, m) local a, i, k, w, x, ok; for i from 1 by 1 to n do a:=simplify(log10(i)); if not (trunc(a)=a) then ok:=1; x:=1; while ok=1 do w:=0; k:=i^x; while k>0 do w:=w+k-(trunc(k/10)*10); k:=trunc(k/10); od; if trunc(i^x/w)=i^x/w then x:=x+1; else if x-1=m then print(i); fi; ok:=0; fi; od; fi; od; end: P(15000, 10);
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Paolo P. Lava and Giorgio Balzarotti, Nov 23 2007
EXTENSIONS
Example corrected by Paolo P. Lava, Oct 23 2009
More terms from Max Alekseyev, Sep 24 2011
STATUS
approved