The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A135195 Numbers n that raised to the powers from 1 to k (with k>=1) are multiple of the sum of their digits (n raised to k+1 must not be a multiple). Case k=10. 12
 6, 330, 360, 1230, 1440, 2250, 2490, 2970, 3150, 3300, 3600, 4410, 5010, 5310, 6930, 8460, 10020, 12300, 12840, 12852, 13050, 14400, 14700, 15420, 15840, 16500, 17220, 18480, 20010, 21840, 22500, 23310, 24840, 24900, 27702, 28050, 29610, 29700, 31500 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS FORMULA Positive integers n such that A195860(n)=11. EXAMPLE 6^1=6 is a multiple of Sum_digits(6)=6 6^2=36 is a multiple of Sum_digits(36)=9 6^3=216 is a multiple of Sum_digits(216)=9 6^4=1296 is a multiple of Sum_digits(1296)=18 6^5=7776 is a multiple of Sum_digits(7776)=27 6^6=46656 is a multiple of Sum_digits(46656)=27 6^7=279936 is a multiple of Sum_digits(279936)=36 6^8=1679616 is a multiple of Sum_digits(1679616)=36 6^9=10077696 is a multiple of Sum_digits(10077696)=36 6^10=60466176 is a multiple of Sum_digits(60466176)=36 6^11=362797056 is not a multiple of Sum_digits(362797056)=45 MAPLE readlib(log10); P:=proc(n, m) local a, i, k, w, x, ok; for i from 1 by 1 to n do a:=simplify(log10(i)); if not (trunc(a)=a) then ok:=1; x:=1; while ok=1 do w:=0; k:=i^x; while k>0 do w:=w+k-(trunc(k/10)*10); k:=trunc(k/10); od; if trunc(i^x/w)=i^x/w then x:=x+1; else if x-1=m then print(i); fi; ok:=0; fi; od; fi; od; end: P(15000, 10); CROSSREFS Cf. A135186, A135187, A135188, A135189, A135190, A135191, A135192, A135193, A135194, A135196, A135197, A135198, A135199, A135200, A135201, A135202. Sequence in context: A221884 A003742 A324099 * A273031 A001509 A295925 Adjacent sequences:  A135192 A135193 A135194 * A135196 A135197 A135198 KEYWORD nonn,base AUTHOR Paolo P. Lava and Giorgio Balzarotti, Nov 23 2007 EXTENSIONS Example corrected by Paolo P. Lava, Oct 23 2009 More terms from Max Alekseyev, Sep 24 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 18 15:04 EDT 2021. Contains 343089 sequences. (Running on oeis4.)