The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A135190 Numbers n that raised to the powers from 1 to k (with k>=1) are multiple of the sum of their digits (n raised to k+1 must not be a multiple). Case k=5. 12
 3, 12, 36, 42, 102, 162, 432, 468, 1002, 1026, 1080, 1188, 1215, 1380, 1512, 1620, 1770, 1950, 1980, 2136, 2394, 2460, 2466, 2628, 3210, 3240, 3276, 3492, 3540, 3654, 3816, 3864, 4032, 4050, 4116, 4374, 4680, 4752, 4806, 4860, 4950, 5058, 5238 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS FORMULA Positive integers n such that A195860(n)=6. EXAMPLE 3^1=3 3^2=9 and 9 is a multiple of 3 3^3=27 -> Sum_digits(27)=9 and 27 is a multiple of 9 3^4=81 -> Sum_digits(81)=9 and 81 is a multiple of 9 3^5=243 -> Sum_digits(243)=9 and 243 is a multiple of 9 3^6=729 -> Sum_digits(729)=18 and 729 is not a multiple of 18 MAPLE readlib(log10); P:=proc(n, m) local a, i, k, w, x, ok; for i from 1 by 1 to n do a:=simplify(log10(i)); if not (trunc(a)=a) then ok:=1; x:=1; while ok=1 do w:=0; k:=i^x; while k>0 do w:=w+k-(trunc(k/10)*10); k:=trunc(k/10); od; if trunc(i^x/w)=i^x/w then x:=x+1; else if x-1=m then print(i); fi; ok:=0; fi; od; fi; od; end: P(2000, 5); CROSSREFS Cf. A135186, A135187, A135188, A135189, A135191, A135192, A135193, A135194, A135195, A135196, A135197, A135198, A135199, A135200, A135201, A135202. Sequence in context: A305542 A232899 A009787 * A101069 A225259 A334891 Adjacent sequences:  A135187 A135188 A135189 * A135191 A135192 A135193 KEYWORD nonn,base AUTHOR Paolo P. Lava & Giorgio Balzarotti, Nov 22 2007 EXTENSIONS More terms from Max Alekseyev, Sep 24 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 2 14:21 EDT 2020. Contains 334787 sequences. (Running on oeis4.)