login
A358485
a(n) is the maximal determinant of an n X n matrix using the integers 0 to n^2 - 1.
0
1, 0, 6, 332, 36000, 6313388, 1765146660, 731664377274
OFFSET
0,3
COMMENTS
427402723914150 <= a(8) <= 427505414757161, 337815614862033534 <= a(9) <= 337888181610225000, 349880703121691699788 <= a(10) <= 349947469107433415221, with upper bounds from corollary 2 of Sigg (2018). - Hugo Pfoertner, Nov 21 2022
LINKS
Markus Sigg, Gasper's determinant theorem, revisited, arXiv:1804.02897 [math.CO], 9 Apr 2018.
EXAMPLE
a(3) = 332:
[5, 7, 2;
1, 3, 8;
6, 0, 4]
CROSSREFS
Cf. A085000 (integers 1 to n^2), A358486 (minimal permanent), A358487 (maximal permanent).
Sequence in context: A324099 A135195 A273031 * A001509 A295925 A210769
KEYWORD
nonn,hard,more
AUTHOR
Stefano Spezia, Nov 18 2022
EXTENSIONS
a(4)-a(6) from Hugo Pfoertner, Nov 19 2022
a(7) from Hugo Pfoertner, Nov 21 2022
STATUS
approved