

A134394


Triangle T(n,k) = Sum_{j=k..n} A077028(j,k), read by rows.


3



1, 2, 1, 3, 3, 1, 4, 6, 4, 1, 5, 10, 9, 5, 1, 6, 15, 16, 12, 6, 1, 7, 21, 25, 22, 15, 7, 1, 8, 28, 36, 35, 28, 18, 8, 1, 9, 36, 49, 51, 45, 34, 21, 9, 1, 10, 45, 64, 70, 66, 55, 40, 24, 10, 1, 11, 55, 81, 92, 91, 81, 65, 46, 27, 11, 1, 12, 66, 100, 117, 120, 112, 96, 75, 52, 30, 12, 1, 13, 78, 121, 145, 153
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Row sums = A055795: (1, 3, 7, 15, 30, 56, 98, ...).
Antidiagonal reading of A139600 without its left column. _ R. J. Mathar_, Apr 17 2011


LINKS

Table of n, a(n) for n=1..83.


FORMULA

A000012 * A077028 as infinite lower triangular matrices.
T(n,k) = (kn1)*( k*(kn)2)/2.  R. J. Mathar, Apr 17 2011


EXAMPLE

First few rows of the triangle are:
1;
2, 1;
3, 3, 1;
4, 6, 4, 1;
5, 10, 9, 5, 1;
6, 15, 16, 12, 6, 1;
7, 21, 25, 22, 15, 7, 1;


MAPLE

A077028 := proc(n, k) if n < 0 or k<0 or k > n then 0; else k*(nk)+1 ; end if; end proc:
A134394 := proc(n, k) add ( A077028(j, k), j=k..n) ; end proc:
seq(seq(A134394(n, k), k=0..n), n=0..15) ; # R. J. Mathar, Apr 17 2011


CROSSREFS

Cf. A077028, A055795.
Sequence in context: A144400 A225281 A057145 * A284855 A074909 A135278
Adjacent sequences: A134391 A134392 A134393 * A134395 A134396 A134397


KEYWORD

nonn,tabl


AUTHOR

Gary W. Adamson, Oct 23 2007


STATUS

approved



