login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A134396 A007318 * A000125. 3
1, 3, 9, 27, 80, 232, 656, 1808, 4864, 12800, 33024, 83712, 208896, 514048, 1249280, 3002368, 7143424, 16842752, 39387136, 91422720, 210763776, 482869248, 1099956224, 2492465152, 5620367360, 12616466432, 28202500096, 62797119488, 139318001664, 308029685760 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (8,-24,32,-16).

FORMULA

Binomial transform of A000125. Row sums of triangle A134395.

O.g.f.: (1-x)*(1-4*x+5*x^2) / (1-2*x)^4. - R. J. Mathar, Jun 08 2008

From Colin Barker, Feb 13 2017: (Start)

a(n) = 8*a(n-1) - 24*a(n-2) + 32*a(n-3) - 16*a(n-4) for n>3.

a(n) = (2^(n-4)*(48 + 20*n + 3*n^2 + n^3)) / 3.

(End)

EXAMPLE

a(3) = 27 = (1, 3, 3, 1) dot (1, 2, 4, 8) = (1 + 6 + 12 + 8), where A000125 = (1, 2, 4, 8, 15, 26, 42,...).

a(3) = 27 = sum of row 3 terms of triangle A134395: (8 + 12 + 6 + 1).

PROG

(PARI) Vec((1-x)*(1-4*x+5*x^2) / (1-2*x)^4 + O(x^30)) \\ Colin Barker, Feb 13 2017

CROSSREFS

Cf. A134395, A000125.

Sequence in context: A304067 A287898 A129770 * A059502 A291006 A289781

Adjacent sequences:  A134393 A134394 A134395 * A134397 A134398 A134399

KEYWORD

nonn,easy

AUTHOR

Gary W. Adamson, Oct 23 2007

EXTENSIONS

More terms from R. J. Mathar, Jun 08 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 18 04:47 EST 2019. Contains 319269 sequences. (Running on oeis4.)