OFFSET
1,2
COMMENTS
For the A-St order of partitions see the Abramowitz-Stegun reference given in A117506.
Partition number array M_3(5), the k=5 member in the family of a generalization of the multinomial number arrays M_3 = M_3(1) = A036040.
The sequence of row lengths is A000041 (partition numbers) [1, 2, 3, 5, 7, 11, 15, 22, 30, 42, ...].
The S2(5,n,m):=A049029(n,m) numbers (generalized Stirling2 numbers) are obtained by summing in row n all numbers with the same part number m. In the same manner the S2(n,m) (Stirling2) numbers A008277 are obtained from the partition array M_3 = A036040.
a(n,k) enumerates unordered forests of increasing quintic (5-ary) trees related to the k-th partition of n in the A-St order. The m-forest is composed of m such trees, with m the number of parts of the partition.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Wolfdieter Lang, First 10 rows and more.
FORMULA
EXAMPLE
Triangle begins:
[1];
[51];
[45,15,1];
[585,180,75,30,1];
[9945,2925,2250,450,375,50,1];
...
CROSSREFS
Cf. There are a(4, 3)=75=3*5^2 unordered 2-forest with 4 vertices, composed of two 5-ary increasing trees, each with two vertices: there are 3 increasing labelings (1, 2)(3, 4); (1, 3)(2, 4); (1, 4)(2, 3) and each tree comes in five versions from the 5-ary structure.
Cf. A134149 (M_3(4) array).
KEYWORD
nonn,easy,tabf
AUTHOR
Wolfdieter Lang, Nov 13 2007
STATUS
approved