login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A049120 Row sums of triangle A049029. 8
1, 6, 61, 871, 15996, 358891, 9509641, 290528316, 10051973371, 388433817091, 16579346005806, 774580047063901, 39313104018590221, 2153825039102763846, 126681355435102649161, 7961385691338995966371, 532402860878855993673036 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Generalized Bell numbers B(5,1;n).

REFERENCES

P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.

LINKS

Table of n, a(n) for n=1..17.

W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.

P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem.

FORMULA

E.g.f. exp(-1+1/(1-4*x)^(1/4))-1.

Representation of a(n) as the n-th moment of a positive function on positive half-axis (Stieltjes moment problem), in Maple notation: a(n)=int(x^n*exp(-1)*exp(-1/4*x)*(1/96*x*hypergeom([],[5/4, 3/2, 7/4, 2],1/1024*x)+ 1/8*4^(3/4)*x^(1/4)/Pi*2^(1/2)*GAMMA(3/4)*hypergeom([],[1/4, 1/2,3/4, 5/4],1/1024*x)+1/8*4^(1/2)*x^(1/2)/Pi^(1/2)*hypergeom([],[1/2, 3/4, 5/4,3/2],1/1024*x)+1/24*4^(1/4)*x^(3/4)/GAMMA(3/4)*hypergeom([],[3/4, 5/4, 3/2,7/4],1/1024*x))/x, x=0..infinity),n=1,2... . - Karol A. Penson, Dec 16 2007

a(n) = D^n(exp(x)) evaluated at x = 0, where D is the operator (1+x)^5*d/dx. Cf. A000110, A000262, A049118 and A049119. - Peter Bala, Nov 25 2011

CROSSREFS

Cf. A049119, generalized Bell numbers B(4, 1, n). A049118.

Sequence in context: A047737 A302535 A086403 * A271841 A056546 A127695

Adjacent sequences:  A049117 A049118 A049119 * A049121 A049122 A049123

KEYWORD

easy,nonn

AUTHOR

Wolfdieter Lang

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 22 11:13 EDT 2018. Contains 315270 sequences. (Running on oeis4.)